
Brain computation as fast spiking neural Monte
Carlo inference in probabilistic programs
George Matheosa,b,*, Andrew D Boltonb,c,*, McCoy Beckerb, Cameron Freerb, and Vikash Mansinghkab

aUC Berkeley; bMIT Probabilistic Computing Project; cHarvard; *Equal Contribution

This manuscript was compiled on November 30, 2022

How can slow, spiking neurons implement the fast probabilistic in-
ferences needed to explain perception and cognition? Biological
neurons are millions of times slower than electronic computers, yet
they appear to robustly approximate probabilistic inferences in com-
plex probabilistic programs with many latent variables in real-time.
Here we show how biologically realistic, massively parallel assem-
blies of spiking neurons can perform real-time probabilistic infer-
ence. Our approach, based on novel weighted Monte Carlo spiking
codes that leverage spike rates as well as coarse spike timing, re-
quires exponentially fewer neurons than standard probabilistic pop-
ulation codes. It also scales to real-time inference via massively par-
allel hybrids of model-based Monte Carlo and data-driven neural net-
works, and works for high-dimensional probabilistic programs that
previous spiking neural inference architectures do not handle. We il-
lustrate generality by providing neurally mappable implementations
of resource-rational variants of Bayesian cognitive models for pri-
mate mental physical simulation, human learning of numerical con-
cepts, and 3D prey tracking by larval zebrafish. We also confirm
predictions of the spiking neural Monte Carlo theory using empiri-
cal data drawn from the hodology, functional neuroanatomy, synap-
tic physiology, and extracellular spike and field electrophysiology of
multiple brain regions and model organisms.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Brain computation | probabilistic programming | Monte Carlo | deep
learning | spiking neural networks | probabilistic inference | visual
perception | mental simulation | concept learning

Tthis paper addresses two questions: In theory, how can1

slow, spiking neurons possibly implement the fast ap-2

proximate probabilistic inferences needed for perception and3

cognition? And can such a theory predict empirical data4

from studies of hodology, functional neuroanatomy, synaptic5

physiology, and extracellular spike and field electrophysiology?6

This paper introduces new, massively parallel architectures for7

spiking neural Monte Carlo inference in probabilistic programs8

with many latent variables, overcoming scaling limitations of9

previous work on spiking neural inference. It also confirms mul-10

tiple predictions about fundamental biophysical mechanisms,11

micro-scale circuits, meso-scale networks, and macro-scale ar-12

chitectures and dynamics using empirical data from multiple13

brain regions and model organisms.14

The idea that everyday perception and cognition relies on15

probabilistic inference in rich, flexible generative models can16

be traced back at least as far as Helmholtz (1) and Laplace17

(2). Probabilistic inference in structured probabilistic models18

played a central role in multiple generations of artificial intelli-19

gence systems (3–5) and computational models of cognition (6).20

Probabilistic inference, and especially sampling-based, Monte21

Carlo approximate inference approaches, are also central to22

reverse-engineering approaches in computational cognitive sci-23

ence, especially the traditions of “resource-rational” analysis of24

cognitive inference processes (7), and in the “Bayesian brain” 25

(8) or “sampling hypothesis” frameworks (9, 10). Unfortu- 26

nately, despite the conceptual appeal of this perspective, it 27

has proved difficult to bridge the gap between computational 28

theories of inference and neural representation (11, 12). 29

Probabilistic programming (13–17) provides a computa- 30

tional formalism for generalizing and scaling implementations 31

of inference in generative models. Probabilistic programs with 32

many latent variables are increasingly central to state-of-the- 33

art architectures for real-time 3D computer vision (17, 18) and 34

theory of mind via inverse planning (19, 20) and also to com- 35

putational cognitive science (21). Probabilistic programs offer 36

new possibilities for solving problems central to embodied in- 37

telligence by integrating data-driven and model-driven modes 38

of inference (22, 23), and support state-of-the-art hybrids of 39

sequential Monte Carlo (16, 24) with variational inference 40

(25, 26). Probabilistic programs can even encode risk-sensitive 41

action selection and decision-theoretic planning (13, 27, 28). 42

Unfortunately, thus far, there have been no spiking neural 43

architectures that can scale to perform real-time, high-quality 44

approximate probabilistic inference in probabilistic programs 45

with many latent variables. There is thus a fundamental gap 46

between computational models of intelligence and biologically 47

realistic models of brain computation. 48

Significance Statement

Cognitive science, neuroscience, and artificial intelligence have
not yielded an integrative theory of how probabilistic inference
is implemented in the mind and brain, leaving fundamental
gaps between phenomenological, causal, and computational
accounts of intelligence. Spiking neural Monte Carlo narrows
these gaps, offering a theory for reverse-engineering brain com-
putation that is more computationally general, cognitively real-
istic, and biologically grounded than artificial neural networks
on their own. It gives a unifying explanation of micro-scale,
meso-scale, and macro-scale features of neural connectivity,
coding, and dynamics. It shows how to automatically construct
implementations of a broad class of probabilistic programs that
encode Bayesian models, and test their predictions against
both behavioral and neural data. Finally, it exposes massive
micro-scale, meso-scale, and macro-scale parallelism inherent
in probabilistic programming, yielding a new brain-like scaling
route for engineering intelligent machines.

G.M. and A.B. and V.M. performed research; C.F. and M.B. assisted with research; V.M. designed
and oversaw research; and V.M., A.B., and G.M. wrote the paper.

Please declare any competing interests here.

1,2George Matheos and Andrew Bolton contributed equally to this work.

1, 2, 5To whom correspondence should be addressed. E-mails: georgematheos@berkeley.edu,
andrewdbolton@fas.harvard.edu, and vkm@mit.edu

Preprint. In preparation for submission to a journal.

Consider that inference in probabilistic programs is ordi-49

narily implemented using electronic computers that perform50

hundreds of millions of instructions per second. These com-51

puters are in turn implemented via logic gates that transition52

billions of times per second. In contrast, biological neurons53

spike millions of times slower, yet many perceptual inferences54

require just hundreds of milliseconds, and many cognitive in-55

ferences require just seconds. This in turn means that the56

brain must somehow approximate probabilistic inference using57

massively parallel circuits that integrate new data without58

the long sequential chains of operations that can be used59

in software. Influential feedforward models of visual object60

recognition have just 5 layers (29).61

Artificial neural network (ANN) models can be trained62

to provide low-latency approximate probabilistic inferences.63

They have been used to build neurally mappable models of64

primate vision (30–32) and mental simulation (33), as well65

as larger-scale models (34) simulation. However, fundamen-66

tal limitations of ANN models, both as AI technology and67

as models of visual perception, are also increasingly widely68

recognized (35–38)69

Even proponents of ANN models see fundamental open70

problems, such as how to account for the role of top-down71

connections in visual cortex, and therefore the computational72

interactions between bottom-up, data-driven processing and73

top-down, model-based feedback (39) This limitation appears74

related to failures of ANN models in practice. Consider that75

even state-of-the-art extensions to CNNs and RNNs for visual76

perception, trained on massive datasets via algorithms that77

lack biologically plausible implementations, exhibit striking78

failures that biological vision systems do not (37). These79

include adversarial examples (40), and also other failures of80

common sense, such as falsely positing everyday 3D objects81

floating inexplicably in unoccupied space (18), and failing82

to miss visually salient objects such as pedestrians, trucks,83

and emergency vehicles (41, 42) Also, standard ANN models84

do not reflect many fundamental characteristics of biological85

neural networks, ranging from the laminar structure of cortex86

to combinations of dense and sparse coding to widespread87

oscillations and synchrony.88

Inspired in part by these challenges, there is a rich lit-89

erature on spiking neural architectures and other massively90

parallel circuit formalisms for probabilistic inference. Promi-91

nent examples include probabilistic population codes (43, 44);92

spiking neural Gibbs samplers suitable for inference in discrete93

Bayesian network models with sufficiently sparse connectivity94

(45, 46); spiking neural Bayesian filters that extend probabilis-95

tic population codes for real-time tracking (47, 48). However,96

these previous proposals for spiking probabilistic inference97

cannot implement state-of-the-art schemes for real-time se-98

quential Monte Carlo inference in complex probabilistic pro-99

grams. There have also been proposals for stochastic digital100

circuits for massively parallel, low precision, real-time Monte101

Carlo (49–51) inference in probabilistic graphical models and102

non-parametric Bayesian models with tens of thousands of103

variables; and other, more specialized neural inference schemes.104

But these stochastic digital circuits do not explain how to per-105

form robust, real-time probabilistic inference using components106

that are as slow as biological neurons.107

This paper introduces spiking neural Monte Carlo circuits,108

including new weighted Monte Carlo spiking codes and mas-109

sively parallel spiking neural assemblies. It shows that these 110

architectures enable hybrids of data-driven and model-driven 111

Monte Carlo inference that suffice for real-time probabilistic 112

inference in probabilistic programs. It includes architectures 113

for generating approximate samples for latent variables and for 114

unbiased estimation of probability densities and importance 115

weights. Crucially, these architectures can also be used recur- 116

sively. They apply at the scale of individual latent variables, 117

and to larger collections of latent variables, arising in both 118

target models and in proposal distributions. This approach 119

thus enables complex Monte Carlo inference architectures, 120

with proposals defined by data-driven probabilistic programs, 121

including artificial neural networks, whose outputs are re- 122

weighted and corrected via generative model-driven Monte 123

Carlo inference. Expressiveness is illustrated via three exam- 124

ples: visual prey tracking by larval zebrafish; mental physics 125

simulation by both humans and non-human primates; and 126

recursive concept learning by human adults. Figure 1 shows 127

three inference tasks, each previously studied in Bayesian cog- 128

nitive science, for which our approach provides the first spiking 129

neural implementations. 130

1. Spiking neural Monte Carlo 131

A. Weighted Monte Carlo spiking codes. A dynamic proba- 132

bilistic program defines a joint density over a sequence z1:T of 133

latent states, and a sequence of observed data, d1:T : 134

P (z1:T ,d1:T) = P (z1)
T∏
t=2

P (zt|zt−1)
T∏
t=1

P (dt|zt) [1] 135

Inference in a dynamic probabilistic program consists of
estimating the conditional distribution P (z1:t|d1:t) for each
t. This can be done sequentially, using the inference about
P (z1:t−1|d1:t−1) to form inferences about P (z1:t|d1:t), using
the following recursion:

P (z1:T |d1:T) = P (z1:T−1|d1:T−1)

×Q(zT ; zT−1,dT) P (zT ,dT |zT−1)
Q(zT ; zT−1,dT)P (dT |dT−1) [2]

The sequential Monte Carlo algorithm implements this re-
cursion for an approximation each distribution P (z1:t|d1:t) rep-
resented as a set {(zi1:t, w

i
t)}Ni=1 of “weighted particles” meant

to approximate the distribution. At each time t, the existing
particles of the form zi1:t−1 are extended, and the weights are
updated, according to

zit ∼ Q(·; dt, zit−1), wit = wit−1
P (zit|zit−1)P (dt|zit)
Q(zit; dt, zit−1)

[3]

B. Massively parallel micro-scale spiking assemblies and mi- 136

cro-circuits for individual latent variables. A conditional prob- 137

ability distribution P (z|par(z)) is implemented using a col- 138

lection of neural assemblies, one for each value i that z can 139

take. The ith assembly has az=i
P neurons in it, each spiking 140

at rate rz=i
P , given a particular value of par(z). The overall 141

rate of the assembly is therefore λz=i
P = az=i

P × rz=i
P . The 142

assemblies correctly implement P (z|par(z)) if the rate of the 143

each assembly is equal to the probability of the corresponding 144

value of z, up to some proportionality constant γP : 145

λz=i
P = γPP (z = i|par(z)) [4] 146

Preprint. In preparation for submission to a journal.

Inference Task

Mental Simulation Concept Learning 3D Prey Tracking

Inferred Latent
World Model

Spiking Neural
Monte Carlo

Implementation

Generative Model

and Probabilistic

Inference
Algorithm

(as Probabilistic
Programs)

{21, 24,

27, 33,

?, ?, ?, ?}

Fig. 1. Real-time spiking neural Monte Carlo models for diverse probabilistic inferences in perception and cognition. Tasks are primate
mental simulation (left column), human concept learning (middle column), and 3D prey tracking (right column). Each task (top row) requires the model organism to infer latent
world models (second row). This is achieved by a spiking neural Monte Carlo implementation (third row) of probabilistic programs (bottom row) that encode a generative
model and a sequential Monte Carlo inference algorithm, implementing hybrids of data-driven and model-driven inference. Spike rasters show weighted Monte Carlo spiking
representations distributed across model neurons from superficial (L2/3), middle (L4), and deeper layers of cortex (L5/6) including sparse codes, dense codes, and power
oscillations in the gamma and theta bands. The theory in this paper shows how to automatically construct spiking models such as these that implement biologically realistic,
massively parallel, real-time inference for a broad class of probabilistic programs.

Likewise, a proposal distribution Q(z; d) is implemented147

using a collection of assemblies, the ith having az=i
Q neurons148

at rate rz=i
Q given d to achieve total rate λz=i

Q = az=i
Q × rz=i

Q ,149

where 150

λz=i
Q = γQQ(z = i; d) [5] 151

For k > 0 let si,kP be the time when the kth spike is emitted 152

@gen function initial_latent_model()
x ~ uniform_discrete(1, 10)
v ~ uniform_discrete(-3, 3)

end
@gen function step_latent_model(

x_prev, v_prev
)
v ~ discretized_gaussian(v_prev, 0.2)
x ~ exactly(x_prev + v)

end
@gen function obs_model(x, v)

y_disc ~ discretized_gaussian(x, 0.5)
y_cont ~ gaussian(y_disc, 0.4)

end

(a) Probabilistic generative model for 1D tracking

x1

v1

x2

v2

yd2

...

yd1

x3

v3

yd3

yc2yc1 yc3
(b) Graphical model corresponding to (a).

activation of each tuning-curve, given y_cont
tuning_curves(y_cont) = normalize([

pdf(gaussian, (mean, 0.4), y_cont)
for mean in 1:10

])
@gen function initial_proposal(y_cont)

y_disc ~ cat(tuning_curves(y_cont))
v ~ uniform_discrete(-3, 3)
x ~ discretized_gaussian(y_disc, 0.5)

end

@gen function step_proposal(x_prev, v_prev, y)
y_disc ~ cat(tuning_curves(y_cont))
v' = y_disc - x_prev # apparent velocity
v ~ discretized_gaussian((v_prev + v')/2, 1)
x ~ exactly(x_prev + v)

end

(c) Data-driven inference proposals

v1

x1

v2

x2

v’2

...
v3

x3

v’3

yd2yd1 yd3

yc2yc1 yc3

(d) Graphical model corresponding to (c).

(e) Trajectory & Observations

(f) Exact Filtering Posterior

(g) Inferred Particles

(h) Value Spiketrains

(i) Weight Spiketrains

Po
si

tio
n

2
4
6
8

10

Time
0 5 10

Ve
lo

ci
ty

-2
0
2

O
bs

er
va

tio
nᵈ

0

5

10

Po
si

tio
n

2
4
6
8

10

0 5 10
Ve

lo
ci

ty

-2
0
2

O
bs

er
va

tio
nᵈ

0

5

10

Po
si

tio
n

2
4
6
8

10

0 1 2 3 4 5 6 7 8 9 10

Ve
lo

ci
ty

-2
0
2

O
bs

er
va

tio
nᵈ

 N
eu

ro
ns

1
2
3
4
5
6
7
8
9

10

Po
si

tio
n

N
eu

ro
ns

1
2
3
4
5
6
7
8
9

10

Time (ms)
0 500 1000 1500 2000

Ve
lo

ci
ty

 N
eu

ro
ns

-3
-2
-1
0
1
2
3

Pa
rti

cl
e

In
de

x

0

5

10

Time (ms)
0 500 1000 1500 2000

Fig. 2. A weighted Monte Carlo spiking code for a 1 dimensional visual prey tracking problem. (a) shows the target probabilistic generative model, implemented in Gen, and (b)
shows its top-down dependency structure as a directed graphical model. (c) shows bottom-up, data-driven inference proposals, along with (d) their dependence structure. (e)
shows the inference problem being solved: tracking a prey moving in 1 dimension. The ground truth prey trajectory is shown in in black, and the observed position data is
shown in green. (f) shows an exact Bayesian filtering solution to this problem. Note that observed position is discretized via Gaussian tuning curves before conditioning the
Bayes filter. (g) shows a particle filtering approximation, with particle importance weights encoded by circle size. (h) shows sparse codes for sampled values representing the
particles from (g), and (i) shows dense codes for estimated importance weights from (g).

Preprint. In preparation for submission to a journal.

II / III

IV

V / VI

WTA

Q MUX

P MUX

P

1-1
1-2

2-2
2-1

3-1

Q

3-2

WTA

1-1
1-2

2-2
2-1

3-1
3-2

Q MUX
P MUX

ΣQ

ΣP

WTA

Q MUX

sel

in sel

in

P MUX

ΣPΣQ

30°

50°

1-1
1-2

2-2
2-1

3-1
3-2

Stimulus Onset

30°

50°

1 2 3

Q1
Q2

Q3

P1
P2 P3

Spiking Neural Monte Carlo Circuit
Data Driven Proposal Sampling Model Driven Scoring

Predicted Cortical Microcircuit Representative Real
Cortical Spiketrains

Dynamically Weighted
Monte Carlo Spiking

Thalamo-cortical
sensory inputInput data from sensors

Data Driven Proposal Sampling Model Driven Scoring

Input samples from
upstream circuits

Cortico-cortical output
Output samples to downstream circuits

Cortico-cortical input

adapted from Sakata et al. 2011

∫÷Q

∫

∫ Q

∫ P

∫ P

∫ Q

ΣQ

ΣP

#Spikes_{÷Q} = #Spikes{ΣQ}(t)
for smallest t when #Spikes{MUX}(t)= KQ

#Spikes_{÷P} = #Spikes{MUX}(t)
for smallest t when #Spikes{ΣP}(t)= KP

#Spikes_{ΣQ Output} ≡ #Spikes_{÷Q}

÷P

#Spikes_{÷Q} / KQ
P/Q =

#Spikes_{÷P} / KP

To RESAMPLE Circuit

#Spikes_{PMUX Output} ≡ #Spikes_{÷P}

#Spikes_{PMUX Output} / KQ

P/Q =
#Spikes_{ΣQ Output} / KP

To RESAMPLE Circuit

KP = 15, KQ = 5Hyperparameters:

Spikes = KP

Spikes = KQ

Extracortical LFP timer (Race begins on trough)

Fig. 3. Micro-scale spiking assemblies and spiking neural Monte Carlo micro-circuits predict connectivity, coding, and dynamics
of real cortical micro-circuits. From left to right, this figure shows the architecture for proposing and scoring a single latent variable; the predicted connectivity
and synaptic characteristics of a real cortical micro-circuit implementing this design; representative spiking at each layer; and real cortical spiking from a depth electrode
recording. Each spiking assembly represents a possible value for a random variable. The sampled proposal value is generated via a winner-take all race, which feeds into
MUXs to generate spike counts. These spike counts yield provably unbiased estimates of proposal and target probabilites, and can be combined into importance weights. This
architecture turns out to predict multiple features of the synaptic physiology, connectivity, and spiking dynamics of cortical micro-circuits.

from the P -assembly corresponding to outcome z = i, and let153

si,0P = 0. We model the overall assembly as a Poisson Process,154

meaning that for each i and each k, the time between the k155

and k + 1th spike is exponentially distributed:156

si,kP − s
i,k−1
P

i.i.d.∼ Exponential(λz=i
P) [6]157

S0
P = {si,kP }i,k is the set of the times at which any P158

assembly spikes. Let SkP be the set of all spike-times except159

the first k, and let tkP be the time at which the kth spike is160

emitted from any assembly:161

tkP = inf Sk−1
P , SkP = Sk−1

P \ {tkP } [7]162

Let zkP be the value i of z corresponding to the assembly which163

emitted the kth spike among all the spikes:164

zlP = i : tkP ∈ {si,kP }k [8]165

Likewise we let si,kQ denote the time of the kth spike from166

the ith Q-assembly, and we define SkQ, tkQ, and zkQ analogously:167

∀k > 0, si,kQ − s
i,k−1
Q

i.i.d.∼ Exponential(λz=i
Q) [9]168

169

∀k > 0, tkQ = inf Sk−1
Q , SkQ = Sk−1

Q \ {tkQ} [10]170

171

∀k > 0, zkQ = i : tkQ ∈ {si,kQ }k [11]172

where S0
Q = {si,kQ }i,k and si,0Q := 0.173

It turns out that since the assemblies are Poisson Processes174

(Eqns. 6, 9) with appropriately set rates (Eqns. 4, 5), the175

values zkP and zkQ are fair samples:176

zkP
i.i.d.∼ P (z|par(z)), zkQ

i.i.d.∼ Q(z; d) [12]177

From this it is evident how to draw a sample from the Q178

proposal distribution: simply use one of the zkQ values! In our179

proposed circuits, the identity i∗ = z1
Q of the first assembly to 180

spike is selected by a Winner-Take-All circuit to be used as 181

the sampled value, and output in the sparse code. 182

Since each spike index is a fair sample from P or Q, we can 183

obtain approximations of P (z = i∗|par(z)) and Q(z = i∗; d) 184

using simple Monte Carlo estimates. To do this for a P -score, 185

we use a circuit that considers what fraction of the first cP 186

spikes came from the i∗th assembly. Let Nz=i
P be the number 187

of spikes from the ith assembly, out of the first cP spikes 188

Nz=i
P =

cP∑
k=1

1zk
P

=i, [13] 189

and let Nz
P denote the count for the sampled value, Nz

P = 190

Nz=i∗
P . Letp̂ be the fraction of the first cP spikes to come from 191

the i∗th assembly: 192

p̂ = 1
cP
Nz
P [14] 193

Then p̂ is an unbiased estimate of p := P (z = i∗|par(z)): 194

E[p̂] = p. 195

For the Q distribution we obtain a probability-value esti- 196

mate slightly differently, because (1) we wish to obtain an 197

unbiased estimate of q−1 = 1/Q(z = i∗; d), rather than of q, 198

and (2) the first spike z1
P equals the sampled value i∗ (since 199

this is how the circuit samples i∗) and therefore this first spike 200

must be ignored. Due to (1), rather than waiting for a fixed 201

number of spikes to occur from any assembly, the 1/Q-scoring 202

circuit waits until cQ spikes occur in the i∗th assembly. Let 203

Nz=i
Q be the number of spikes from the ith assembly by the 204

time that the cQ + 1th spike is emitted by the i∗th assembly, 205

Nz=i
Q =

∑
k

1
si,k≤si

∗,cQ+1 , [15] 206

and let Nz
Q be the number of spikes from all the assemblies 207

in this time, excluding the first spike: Nz
Q =

∑
i
Nz=i
Q − 1. 208

Then let q̂−1 be the ratio of the total number of spikes in any209

assembly to the number from the i∗th assembly in this time:210

q̂−1 = 1
cQ
Nz
Q [16]211

Then q̂−1 is an unbiased estimate of q: E[q̂−1] = q.212

Let τ sample
Q,z be the amount of time to generate a sample213

of z from Q, and let τ score
Q,z be the amount of time needed to214

Q-score the sample after it has been drawn,215

τ sample
Q,z = t1Q, τ score

Q,z = s
i∗,cQ
Q [17]216

so
τ sample
Q,z ∼ Exponential(

∑
i

λiQ),

τ score
Q,z − τ sample

Q,z ∼ Erlang(cQ + 1, λi
∗
Q)

The amount of time τ score
P,z needed to P -score z is defined217

analogously.218

C. Massively parallel meso-scale spiking networks for high-219

-dimensional probabilistic programs. For simplicity of presen-220

tation we assume that the latent state and data vectors zt and221

dt have fixed length regardless of t, and we use the indices222

{1, . . . , |zt|} to refer to the variables in zt and the indices223

{|zt|+ 1, . . . , |zt|+ |dt|} to refer to the variables in dt.224

Since the step model is a probabilistic program, the density225

P (zt|zt−1) decomposes into the product226

P (zt|zt−1) =
|zt|∏
i=1

P (zit|{zjt}j∈part
P

(i), {z
j
t−1}j∈part−1

P
(j)) [18]227

where partP (i) and part−1
P are the indices of the parent variables228

of variable i in zt and zt−1 respectively.229

Likewise, the Q proposal probabilistic program decomposes230

into a product. Since values sampled from Q proposal distri-231

butions must be sampled in the topological order induced by232

the probabilistic program, we emphasize that the variables233

proposed by Q are organized into DepthQ layers L1
Q through234

L
DepthQ
Q , which together form a partition of the set of variable235

indices {1, . . . , |zt|}. Q(zt; zt−1,dt) decomposes into236

Q(zt; zt−1,dt) =
DepthQ∏
k=1

∏
i∈Lk

Q

Q(zit; {zjt}j∈part
Q

(i), {z
j
t−1}j∈part−1

Q
(i),

{djt}j∈pard
Q

(i)) [19]

partQ, part−1
Q , and pardP are the indices of the parent variables237

of variable i in zt, zt−1, and dt respectively:238

Let τ sample
Q,Lk

Q

be the maximum time needed to sample any239

variable in LkQ, let τ score
Q denote the maximum time needed to240

score any variable in zt, and let τ score
P denote the maximum241

time needed to score any variable in zt or dt.242

τ sample
Q,Lk

Q

= max
i∈Lk

Q

τ sample
Q,i [20]243

244

τ score
Q =

|zt|max
i=1

τ score
Q,i , τ score

P =
|zt+dt|max
i=1

τ score
P,i [21]245

Δxyz

xyz

obs
θ,φ

qxyz

pxyz

pr
prev

prev

Δxyz
pp

θ,φ

qr Δxyz
q

qxyz pxyzq
θ,φ

p
θ,φ

qr
pr Δxyz

pΔxyz
q

weight

q
θ,φ

p
obs

θ,φ

p
obs

θ,φ

Layer 5/6:
dense scores

Layer 2/3:
sparse samples

Layer 4:
conditional distributions

qxyz

pxyz

q
θ,φ

p
θ,φ

qr

pr

Δxyz
p

Δxyz
q

p
obs

θ,φ

La
ye

r 4
 M

ul
ti-

un
it

Ac
tiv

ity

20 ms

G
am

m
a

Po
w

er

q
θ,φ
^ ^1/ qr^1/p

obs
θ,φ

qxyz^ Δxyz
qp

r^
p
θ,φ
^ ^ pxyz^ Δxyz

p^1/ 1/ ^

θ,φ
^ ^

r^ xyz^ Δxyz

^

obs
θ,φ

Δxyz

xyz

prev

prev

^

^

Fig. 4. Meso-scale spiking monte Carlo networks for sampling
and scoring multiple variables. (top) the dependence structure of one time
slice in the 3D prey tracking model, showing how proposed values and scoring can be
interleaved and parallelized. (middle) Each variable’s data-driven proposal sampler
and model-based scoring circuit is located in its own micro-circuit. The graph structure
above is implemented via inter-micro-circuit connections at the appropriate layers.
(bottom) This architecture predicts traveling spiking cascades, spreading across
dependent columns at the speed of gamma oscillations, that have been confirmed
in multiple model organisms. Note that latency is low — only long enough to get a
single sampled value from the layer II/III WTAs — because all scoring can be done
via massive parallelism. Also note that all variables in the target model can be scored
at the same time, regardless of its size.

Preprint. In preparation for submission to a journal.

Size of Spiking Neural Representation

Latent Variables Observed Variables
Weighted Monte Carlo

(this paper)
ENS Codes,

Standard PPCs

1D object tracking {xt, ẋt}t {dxt }t Sparse: 27
Dense: 5

Dense: 140

2D object tracking {xt, yt, ẋt, ẏt}t {dxt , d
y
t }t Sparse: 30

Dense: 10
Dense: 2500

Mental Physics
Simulation

{xt, yt, ẋt, ẏt, ot}t {((d(i,j)
t)10

i=1)10
j=1)}t Sparse: 38

Dense: 110
Dense: 2500

3D object tracking from
2D observations

{xt, yt, zt, ẋt, ẏt, żt,
rt, φt, θt}t

{dφt , dθt }t Sparse: 160
Dense: 20

Dense: 23,180,062,500

Recursive Concept
Learning

(Sizes are for
D = 2,M = 10)

⋃D

h=1

⋃2h−1

b=1 {s
(h,b), τ

(h,b)
r ,

τ
(h,b)
c , n

(h,b)
1 , n

(h,b)
2 }

{dt}Mt=1
Sparse: 180
Dense: 40

Dense: 5.92704× 1011

Table 1. Weighted Monte Carlo spiking requires exponentially fewer neurons than standard probabilistic population codes
and ENS spiking codes. For low-dimensional probabilistic programs that only make a small number of latent choices, the difference can
be modest in aboslute terms. As the number of latent variables in the probabilistic program grows, the cost of the neural representation for
previously proposed schemes grows exponentially, rendering them impractical for the majority of perceptual and cognitive inferences.

Then the overall latency needed at each timestep of SMC to246

sample zt and estimate the importance weight update wt/wt−1,247

τ , is bounded by248

τ ≤
DepthQ∑
k=1

τ sample
Q,Lk

Q

+ τ score
Q + τ score

P [22]249

Observe that while the sampling time grows linearly in the250

depth of Q,the scoring time does not depend on the depth of Q251

or P , and given a fixed Q-depth, adding more variables to the252

model also does not increase latency. That is, arbitrarily large253

models P can be used to provide top-down feedback without254

linearly∗ increasing the latency of the circuit, since all the255

variables in the model can be scored in parallel.256

D. Massively parallel macro-scale spiking circuits for real–257

time sequential Monte Carlo. The cortical columns for particle258

i corresponding to the Q sampler, Q scorer, and P scorer259

for each variable in zit, and the columns for P -scoring each260

variable in dt, output a vector zit of sampled variable values261

represented in the sparse code, and output two collections262

of spike counts, {N i,j
P }
|zt|+|dt|
j=1 and {N i,j

Q }
|zt|
j=1 (these are the263

counts Nz
P and Nz

Q used in Eqns. 14, and 16 where z is the264

jth variable in the ith particle). These spike counts encode the265

set of probability estimates {p̂i,j}|zt|+|dt|j=1 and {(q̂i,j)−1}|zt|j=1266

via the relations267

p̂i,j = N i,j
P /cP , q̂−1

i,j = N i,j
Q /cQ [23]268

While each of these score terms can be approximated rea-
sonably well using a spike count from a single neuron or
assembly that is proportional to the value p̂ or q̂ by a fixed
constant cP or cQ, the overall importance weight estimate
ŵi =

∏|zt|+|dt|
j=1 p̂i,j

∏|zt|
j=1 q̂

−1
i,j can have enormous dynamic

range, and so cannot be represented with a spike count pro-
portional to the value with a fixed constant of proportionality.

∗ In our model of assemblies as Poisson-Processes, where the τscore
P,i

values are Erlang-distributed,
the expected latency will slightly increase as more variables are added to the model, because this
increases the probability that one of the variables happens to take unusually long to score. In other
models of neural scoring assemblies – e.g. as units which either spike or do not during each fixed
time window (like (47)) – increasing the number of variables would not at all increase the expected
scoring latency.

† To alleviate this issue, when multiplying p̂ and q̂ terms to
compute the importance weight estimates ŵi, we use a circuit
that dynamically chooses the constant of proportionality used
in the spiking representation of ŵ, and represents this value
using a count clog on a logarithmic scale (so that large ranges
of values can be represented). The constant of proportionality
is chosen to be the same for each particle, so that the different
importance weights (ŵi)i can be compared directly to one
another. This is implemented using the MultAutonorm circuit,
which has N + 1 output assemblies, one to output the value
clog, and N to output a spiking rate λi for each particle:

(clog, (λi)Ni=1) ∼

MultAutonorm(({N i,j
P }
|zt|+|dt|
j=1 , {N i,j

Q i,j}|zt|j=1)Ni=1) [24]

These outputs convey the importance weight values in a rep- 269

resentation called neural floating point, where one line is on a 270

logarithmic scale and the other is on a direct scale (similarly 271

to the way floating-point numbers are represented in digital 272

computers): 273

ŵi = bclogλi [25] 274

where b is the base of the logarithm. The spike rates λi can be 275

read-out into spike counts and sent to other parts of the circuit 276

as estimates of ŵi/bclog , or these assemblies can themselves be 277

used as a sampler (using the same WTA circuit used in the Q 278

samplers for sampling each variable) to choose a particle with 279

probability proportional to its importance weight. This is the 280

key operation needed to perform resampling. Crucially, the 281

MultAutonorm will choose a clog value so that the sum
∑

i
λi 282

of the output spiking rates has a small dynamic range (roughly, 283

a range of 10-100 Hz), so that it is possible to read-out spikes 284

from some of the assemblies relatively quickly, and none of the 285

assemblies are saturated. For the details of this circuit, see 286

Appendix ??. 287

†For example, if a neuron’s maximum rate is 100Hz and the maximum importance weight value is
1, we need 100Hz neurons to correspond to ŵ = 1. But then in cases where ŵ = 10−10 ,
we’d need to read-out a spike count from a neuron with rate 10−8 Hz. Reading this out at any
reasonable precision would require waiting for years, or using an assembly with millions of neurons!

V / VI
II/III/IV

Winning index
and observation Particle scores from

scoring circuit

Winning
Particle Index

Sensor

observation

Sensor
Propose and Score

Normalize

Resample

Cortex

Basal
Ganglia

Thalamus

} K particles

Previous Sampled States

Chrobak and Buzaki, 1998

Hughes and Crunelli, 2006

Redgrave et al., 2010

qxyz pxyzq
θ,φ

p
θ,φ

qr
pr Δxyz

pΔxyz
qp

obs
θ,φ

q
θ,φ
^ ^1/ qr^1/p

obs
θ,φ

qxyz^ Δxyz
qp

r̂
p
θ,φ
^ ^ pxyz^ Δxyz

p ^1/ 1/ ^

θ,φ
^ ^

r^ xyz^ Δxyz

^

qxyz pxyzq
θ,φ

p
θ,φ

qr
pr Δxyz

pΔxyz
qp

obs
θ,φ

q
θ,φ
^ ^1/ qr^1/p

obs
θ,φ

qxyz^ Δxyz
qp

r̂
p
θ,φ
^ ^ pxyz^ Δxyz

p ^1/ 1/ ^

θ,φ
^ ^

r^ xyz^ Δxyz

^

qxyz pxyzq
θ,φ

p
θ,φ

qr
pr Δxyz

pΔxyz
qp

obs
θ,φ

q
θ,φ
^ ^1/ qr^1/p

obs
θ,φ

qxyz^ Δxyz
qp

r̂
p
θ,φ
^ ^ pxyz^ Δxyz

p ^1/ 1/ ^

θ,φ
^ ^

r^ xyz^ Δxyz

^

qxyz pxyzq
θ,φ

p
θ,φ

qr
pr Δxyz

pΔxyz
qp

obs
θ,φ

q
θ,φ
^ ^1/ qr^1/p

obs
θ,φ

qxyz^ Δxyz
qp

r̂
p
θ,φ
^ ^ pxyz^ Δxyz

p ^1/ 1/ ^

θ,φ
^ ^

r^ xyz^ Δxyz

^

qxyz pxyzq
θ,φ

p
θ,φ

qr
pr Δxyz

pΔxyz
qp

obs
θ,φ

q
θ,φ
^ ^1/ qr^1/p

obs
θ,φ

qxyz^ Δxyz
qp

r̂
p
θ,φ
^ ^ pxyz^ Δxyz

p ^1/ 1/ ^

θ,φ
^ ^

r^ xyz^ Δxyz

^

qxyz pxyzq
θ,φ

p
θ,φ

qr
pr Δxyz

pΔxyz
qp

obs
θ,φ

q
θ,φ
^ ^1/ qr^1/p

obs
θ,φ

qxyz^ Δxyz
qp

r̂
p
θ,φ
^ ^ pxyz^ Δxyz

p ^1/ 1/ ^

θ,φ
^ ^

r^ xyz^ Δxyz

^

}
K particles

Fig. 6. Macro-scale, massively parallel spiking architectures for resampling that predict large-scale features of brain connectivity
and dynamics. (left) A massively parallel resampling circuit that leverages multiple particles to provide more stable inferences for dynamic models. (middle) This architecture
predicts the existence of brain structures that couple microcircuits across multiple brain regions to calculate particle weights, and that return the indices of selected particles
back to the same source microcircuits. (right) Each particle has an independently evolving copy of the multivariate model shown previously. (52) and others have found
this pattern of connectivity in the cortico-subcortical-thalamic loop. One hypothesis is that normalization and resampling happen in subcortical and thalamic regions. This
architecture also predicts layering of oscillatory cycles for sampling and scoring within each particle with larger oscillations for sampling and scoring across particles. (53) and
others have found that gamma oscillations are embedded within theta oscillations, and (54) and others have suggested that the thalamus (which can read out when resampling
has finished) generates the “clock signals” that drive theta oscillations.

Given weighted particles (zit, wit)Ni=1, resampling outputs a288

new collection (z[i]
t , w

[i]
t)Ni=1, where289

∀i, z[i]
t = za

i
t
t where ait ∼ Cat([w̃1

t , . . . , w̃
N
t]) [26]290

and ∀i, w[i]
t = 1.291

2. Scaling via hybrids of data-driven and model-driven292

inference293

An L-layer artificial neural network with Kl neurons in layer294

l computes the activity vector xl at each layer l according to295

xln = f l(xl−1)n = σ(wl0,n +
Kl−1∑
m=1

wlm,nxl−1
m) [27]296

The overall neural network operates on data matrix [di,j][i,j]297

and implements the computation298

f([di,j]i,j) = xL = fL(· · · f2(f1([di,j]i,j))) [28]299

The output vector defines a probability distribution over300

variable z by301

P (z = i|[di,j]i,j) = xLi∑KL
n=1 xLn

[29]302

We can implement the neural network by using vectors of303

spiking rates, λl, to represent the activity vectors zl, using304

a network of neurons arranged so that the rate of the nth305

neuron in layer l to306

λln = σ(wl0,n +
Kl−1∑
m=1

wim,nλ
l−1
m) [30]307

Sampling from the last layer, of this network, λL, can be308

performed by treating each neuron in the output layer as a309

neural assembly, and using the proposed circuits for sampling310

or scoring from neural assemblies.311

The probability of a pixel given the deterministic rendering
of that pixel from the latent state, P (di,j |ri,j), is computed

by marginalizing over two latent variables, u1 and u2. It turns
out that this can be approximated by pseudo-marginalizing
over these variables using Spiking Neural Monte Carlo to
propose values for u1 and u2, and evaluate the known density
P (di,j , u1, u2|ri,j) given those values:

P (di,j |ri,j) =
∑
u1,u1

P (di,j , u1, u2|ri,j)

≈ P (di,j , u1, u2|ri,j)
Q(u1, u2; di,j , ri,j)

where u1, u2 ∼ Q(·; di,j , ri,j) [31]

After resampling, resampled particle z[i]
t may be run 312

through a sequence of MCMC kernels Ti to produce a re- 313

juvenated sample z(i)
t 314

z(i)
t ∼ (Tk ◦ Tk−1 ◦ · · · ◦ T1)(·; z[i]

t) [32] 315

Particle Gibbs defines an MCMC transition kernel 316

PGQ,dt,zt−1 which depends on a proposal distribution Q, the 317

data dt, and the previous latent state zt−1 that the particle 318

to rejuvenate, z[i]
t , was generated in connection with (that is, 319

z[ait]
t−1). 320

To sample a new state from z∗t ∼ PGQ,dt,zt−1 (·; zt), the 321

following steps are run: 322

z′t ∼ Q(·; zt−1, zt,dt) [33] 323

324

α ∼ Bernoulli(
P (z′t,dt|zt−1)
Q(z′

t
;zt−1,zt,dt)

P (z′
t
,dt|zt−1)

Q(z′
t
;zt−1,zt,dt) + P (zt,dt|zt−1)

Q(zt;zt−1,z′t,dt)

) [34] 325

326

z∗t = 1αz′t + 1¬αzt [35] 327

3. Discussion 328

How can this theory be tested more thoroughly against em- 329

pirical data? One approach is to build and test larger-scale 330

spiking Monte Carlo circuit models of brain systems for 3D 331

scene perception and navigation. These can be grounded in 332

structured latent world models that integrate probabilistic 333

Preprint. In preparation for submission to a journal.

Characteristics of fundamental building blocks of
spiking neural Monte Carlo

Experimental evidence for their existence in
biological neural systems

Samples are represented via sparse codes from WTAs, but
scores are represented via dense codes from MUXes and

assemblies
Sparse & dense codes coexist in multiple brain regions (57)

Samples are generated via first-to-spike races between Poisson
processes

EPSCs and IPSCs in all neural systems studied to date follow
an exponentially-distributed spacing rule, i.e. the number of

spikes in a given time window follows a Poisson process
(58, 59). Increased synaptic input yields a change in Poisson
rate, i.e. probability of race victory scales directly with input.

Winner-take-all samplers rely on fast inhibition.
Ephaptic coupling enables inhibition at the speed of electrical

propagation (60, 61)

Scoring units rapidly and accurately count spikes from MUXes
and assemblies.

NMDAR plateau potentials are a recently discovered
non-decaying synaptic current (50ms) that can stack linearly
with other arriving potentials, providing a mechanism for short

timescale counting of presynaptic spikes. (62, 63)

occupancy grids, 3D scene graphs (18), and hierarchical object334

models that adjust resolution based on perceptual uncertainty335

(77). In both non-human primates and rodents, these models336

could be compared to fine-grained neural data using relatively337

well-established techniques (78), and also simultaneously com-338

pared to fine-grained behavioral measurements of reaction339

time and accuracy. It seems appealing to use spiking neural340

Monte Carlo to integrate empirical constraints that neither341

Bayesian cognitive models nor artificial neural networks can342

precisely account for, such as the number of neurons and con-343

nectivity of the dorsal and ventral streams, and quantitative344

latency/accuracy tradeoffs that are observed both neurally345

and behaviorally. It remains to be seen whether quantitative346

predictions can be made precisely enough to motivate direct347

comparison of interventions on model networks to interventions348

on biological neurons.349

Another approach, grounded in cognitive neuroscience, is to350

seek spatiotemporally coarser behavioral and neural correlates351

that are easier to measure via neuroimaging techniques. For352

example, the timecourse of traveling gamma waves, aligned353

with connectomic data, constrains the dependence structure354

of data-driven proposals for 3D perception via inverse graph-355

ics (22, 79), and also the dependence structure of top-down356

generative models. Quantitative similarities between weighted357

Monte Carlo spiking activity could also potentially be com-358

pared to behavioral similarity measures and to similarity be-359

tween stimulus-induced BOLD activity.360

Complementary tests can be obtained via smaller model361

organisms and also via in vitro studies, leveraging their vastly362

greater levels of observability and control. For example, the363

spiking model of 3D visual prey tracking from this paper al-364

ready gives a more detailed causal account of prey capture365

than previous phenomenological models grounded in Bayesian366

cognitive science (80), and suggests an approach to depth esti-367

mation that could explain recent data on 3D barrier avoidance368

(81). It also seems appealing to implement spiking neural369

Monte Carlo circuits using detailed biophysical simulators370

(82, 83), and to compare implementations against quantitative371

data from in vitro experiments.372

A. Scaling to richer forms of cognition and learning. Bayesian373

cognitive scientists can directly apply the theory in this pa-374

per to make more fine-grained resource-rational models of375

causal reasoning. For example, spiking neural circuits for 376

model-driven particle Gibbs MCMC could potentially be fit 377

to population-level inference latency and accuracy. Unlike 378

standard resource-rational models, spiking neural Monte Carlo 379

model fits could incorporate quantitative assumptions about 380

the number of neurons and the level of parallelism that is 381

recruited by the thought process. Spiking neural Monte Carlo 382

can also be used to implement richer models of thinking pro- 383

cesses that leverage inference-based value-of-information esti- 384

mators (84, 85). 385

Real-time perceptual learning, real-time inference over dy- 386

namic data structures (13), and structure learning of proba- 387

bilistic programs (86) all present additional challenges. For 388

example, although probabilistic programs can learn models of 389

novel objects from just a handful of images (18), they have 390

not yet been shown to simultaneously learn the structure of 391

new generative models for objects and the structure of new 392

efficient data-driven proposals for recognizing those objects. 393

This paper shows how the training data for self-supervised 394

learning of data-driven neural network proposals could be 395

generated, and how probabilistic losses could be rapidly esti- 396

mated. It does not reveal how to scalably estimate gradients, 397

even for shallow models. It is unclear if biologically realis- 398

tic deep learning implementations can be developed, or if it 399

will be more fruitful to pursue alternatives based on shallow 400

learning and geometric modeling (87, 88) or online synthesis 401

of provably near-optimal data-driven proposals (89). It is 402

also unclear which truncated representations of latent data 403

structures (such as 3D scene graphs, the plans of other agents, 404

syntactic parse trees and logical representations of grounded 405

natural language semantics,and even symbolic probabilistic 406

program source code representing learned concepts) will lead 407

to practical spiking neural Monte Carlo circuits for real-time 408

inference. 409

B. Risk-sensitive control, action selection, and planning via 410

inference. Brain computation requires risk-sensitive action 411

selection, not just uncertain inference about world structure. 412

The theory of spiking neural Monte Carlo can be applied to 413

yield neurally mappable architectures for risk-sensitive model- 414

based predictive sensorimotor control, action selection, and 415

planning. This can be achieved via well-known reductions 416

of those problems to probabilistic inference, such as (90–92). 417

Characteristics of micro-circuits for
single-variable importance sampling Characteristics of biological cortical micro-circuits

WTA units fire only sparsely, at the beginning of each
sample/score cycle, to enforce a single race winner.

Layer II/III fires the most sparsely of the cortical layers. (64, 65)

Assembly neurons receive parents’ sampled values from
parents’ WTA samplers, as well as sensory observations.

Layer IV receives intracortical input from Layer II/III (WTAs) of
other microcolumns, plus sensory input from the thalamus (66)

WTA neurons control which assembly’s spikes pass through the
MUX

Layer II/III sends inhibitory projections to Layer V dendrites (67)

Multiplexer units collect spikes from all assemblies, but only
output spikes from the assembly chosen by the WTA

Dendritic segmentation of input channels has recently been
discovered, providing a biophysically realistic implementation

mechanism (68, 69)

Characteristics of meso-scale multivariate
importance sampling

Meso-scale characteristics of biological neural
systems

Multivariate importance sampling requires latency sufficient for
proposal cascades and synchronized scoring, yielding traveling
cascades of layer 4 spiking across micro-circuits, at the latency

needed for individual samples

Gamma-band (30-100Hz) oscillations and traveling waves (70)
are widely observed

Latency τ for sampling and scoring depends on data and parent
values, and is thus variable across brain states and regions

Gamma-band oscillations are predicted to have variable
frequency, as is widely observed

Assemblies representing more probable values will spike earlier
relative to traveling cascades

Phase precession of spiking with respect to gamma oscillations
has been observed (71)

Global posterior probabilities can only be read via normalized
weights, not directly via spike rates, thus “beliefs” are only

implicit and challenging to extract from weighted Monte Carlo
spiking

Direct mappings of posterior probabilities and environmental
probabilities onto firing rates are not yet strongly supported by

empirical evidence (12)

Characteristics of macro-scale sequential Monte
Carlo

Macro-scale connectivity and dynamics of
biological neural systems

Resampling draws on weights that span multiple microcircuits
and returns new particle indices (for new sources of parent

variables) back to source microcircuits

There is a cortically-stratified cortico-subcortical-thalamic loop
that sends information from lower cortical layers (where SNMC
predicts weights are stored) to the basal ganglia, and then back

through the thalamus to source cortical layers (52)

Resampling of particles containing multiple variables takes more
time than sampling single variables, and is synchronized across

particles.

There exist larger-scale oscillations (e.g. alpha, theta) that
embed gamma within them (53, 72), with rhythms generated

at/near putative thalamic source of resampling (54)

Resampled particles can be used to make high-quality
multivariate proposals (25, 73). Higher-quality proposals (i.e.

closer to the local posterior distribution, generating higher
posterior probability values for latent variables) will have higher

weights, and can therefore be proposed more quickly (relative to
the cycle at which particles are resampled).

Traveling waves are observed for slower oscillations, e.g. alpha
and theta (74). Also, phase precession is observed relative to
slower theta rhythms, e.g. for hippocampal place cells, which

spike earlier relative to theta oscillations for place cells
representing more probable places (75) and of activity in other

regions such as the mPFC (76)

Structured, “program-like” policies for selecting actions can418

also be inferred using Monte Carlo inference in probabilistic419

programs (93). However, despite the potential engineering420

appeal of these approaches, their potential reverse-engineering421

value has yet to be evaluated. It also is possible that the brain422

leverages specialized neural mechanisms for optimizing risk-423

sensitive action selection beyond what can easily be achieved424

via Monte Carlo inference.425

C. Fundamental limits on scale and efficiency. This paper has 426

focused on sequential Monte Carlo approximations whose ac- 427

curacy is difficult to analyze. However, it is important to 428

note that there are high-dimensional, non-convex energy land- 429

scapes for which approximate sampling is provably efficient, 430

even when optimization is provably NP-hard (94). But these 431

results do not directly address the unreasonable in-practice 432

effectiveness of sophisticated hybrids of data-driven and model- 433

Preprint. In preparation for submission to a journal.

driven Monte Carlo for high-dimensional probabilistic pro-434

grams. There is a widespread need for new theory that can435

guide the design of real-time Monte Carlo approximations, ac-436

counting for design tradeoffs between latency, parallelism, and437

variance. One promising approach could be to try to extend438

recent spiking circuit formalisms from theoretical computer439

science to illuminate representational tradeoffs for parallel440

sampling circuits. Consider that given sufficient hardware,441

inference latency can be driven down to the number of serial442

steps needed to generate proposals, regardless of the number443

of variables being inferred or the complexity of the causal444

dependencies among them. But how do the mind and brain445

automatically constrain the structure of their generative mod-446

els, so that “good enough, shallow enough” inference processes447

can be automatically generated?448

Despite these open questions, the integrative theory intro-449

duced in this paper offers a candidate unifying framework for450

simultaneous reverse-engineering of the mind and brain at the451

computational, cognitive, and neural levels. It has survived an452

initial battery of empirical tests. We hope it enables neurosci-453

entists and cognitive scientists to collaborate more closely with454

each other, and with artificial intelligence researchers, using a455

modeling formalism for intelligent computation that simultane-456

ously addresses phenomenological, causal, and computational457

considerations. It also invites an intriguing question, in this458

time of excitement and concern about artificial intelligence:459

what useful intelligent systems can we build, if this brain-like460

model of computation is implemented using silicon that spikes461

millions of times faster than biological neurons?462

Materials and Methods463

Spiking Neural Monte Carlo Emulation in the Gen Prob-464

abilistic Programming System.. We have built an extension465

to the Gen probabilistic programming language (17) that allows466

scientists to run Monte Carlo inference algorithms in Gen probabilis-467

tic models and visualize the spiketrains that (one implementation468

of) Spiking Neural Monte Carlo may produce when running that469

inference algorithm on a given dataset. This extension also cor-470

rupts the probability calculations used to implement Monte Carlo471

inference algorithms, so that the probability computations are per-472

formed at low-precision, to perfectly match the scheme for obtaining473

probability-estimates used by our circuits for P -scoring, Q-scoring,474

and auto-normalization. To produce spiketrains corresponding to475

the Q-sampling, 1/Q-scoring, and P -scoring for a given variable476

in a given particle on a given inference run, the emulator logs the477

noisy probability estimates it uses during inference. When asked to478

produce a spiketrain (for some subset of the neurons in cortex Layer479

2-6 need for these operations), the emulator samples spiketrains480

consistent with these probability estimates and sampled values from481

the conditional distribution over spiketrains under the distribution482

over spiketrains implied by the circuits described in (the conditional483

distribution has a closed form due to the nice properties of Poisson484

Processes). The emulator can also produce spiketrains correspond-485

ing to the autonormalize-and-multiply operation. In effect this486

library will allow scientists to (1) experiment with how the quality487

of probabilistic inferences under a given model vary as the latency,488

assembly-sizes, and particle counts are varied to change the level489

of noise in the neural computations, and (2) produce spiketrains490

consistent with inference under given models, to compare to real491

biological activity to help them test the empirical predictions of492

the SNMC theory (and also to help them test what models and493

proposal distributions are actually present in the brains of different494

organisms).495

Event-driven simulation of Spiking Neural Monte Carlo496

circuits.. To more thoroughly test the feasibility of Spiking Neural497

Monte Carlo, we have also implemented a compiler which can498

compile any model and algorithm in a restricted subset of the Gen499

probabilistic programming language into a spiking neural network 500

which runs SNMC inference under the given model using the given 501

inference algorithm. We used an event-driven simulator to simulate 502

these neural networks and verify that they produce reasonable 503

inferences in our simpler models. These simulations are run by 504

feeding in spiking input events to the simulator at fixed intervals, 505

to input the observed data to the neural circuit over time, and 506

inference results are read out of the circuit in the Weighted Monte 507

Carlo Spiking Code. The neural networks which are produced 508

consist entirely of neurons whose spiking behavior is described by 509

an inhomogenous Poisson Process; all the neurons we use have 510

biologically realistic rates, except for some of the neurons used to 511

implement logic-gating circuitry (which we expect is implemented 512

using sub-neuronal mechanisms in the brain). 513

ACKNOWLEDGMENTS. The authors would like to thank 514

Mehrdad Jazayeri and Melissa Kline for helpful comments on 515

drafts. 516

1. Hv Helmholtz, Treatise on Physiological Optics. (Thoemmes Continuum, Bristol), (1856). 517

2. PS Laplace, Philosophical Essay on Probabilities. (1825). 518

3. S Russell, P Norvig, Artificial Intelligence: A Modern Approach. (Prentice Hall), (1995). 519

4. S Thrun, W Burgard, D Fox, Probabilistic Robotics. (MIT Press), (2005). 520

5. F Saad, Ph.D. thesis (Massachusetts Institute of Technology) (2022). 521

6. BM Lake, TD Ullman, JB Tenenbaum, SJ Gershman, Building machines that learn and think 522

like people (2016). 523

7. F Lieder, TL Griffiths, Resource-rational analysis: Understanding human cognition as the 524

optimal use of limited computational resources. Behav. brain sciences 43 (2020). 525

8. DC Knill, A Pouget, The bayesian brain: the role of uncertainty in neural coding and compu- 526

tation. TRENDS Neurosci. 27, 712–719 (2004). 527

9. J Fiser, P Berkes, G Orbán, M Lengyel, Statistically optimal perception and learning: from 528

behavior to neural representations. Trends cognitive sciences 14, 119–130 (2010). 529

10. P Berkes, G Orbán, M Lengyel, J Fiser, Spontaneous cortical activity reveals hallmarks of an 530

optimal internal model of the environment. Science 331, 83–87 (2011). 531

11. SW Linderman, SJ Gershman, Using computational theory to constrain statistical models of 532

neural data. Curr. opinion neurobiology 46, 14–24 (2017). 533

12. WJ Ma, M Jazayeri, , et al., Neural coding of uncertainty and probability. Annu. review neuro- 534

science 37, 205–220 (2014). 535

13. N Goodman, V Mansinghka, DM Roy, K Bonawitz, JB Tenenbaum, Church: a language for 536

generative models. arXiv preprint arXiv:1206.3255 (2012). 537

14. B Milch, et al., 1 blog: Probabilistic models with unknown objects. Stat. relational learning, 538

373 (2007). 539

15. V Mansinghka, D Selsam, Y Perov, Venture: a higher-order probabilistic programming plat- 540

form with programmable inference. arXiv preprint arXiv:1404.0099 (2014). 541

16. VK Mansinghka, et al., Probabilistic programming with programmable inference in Proceed- 542

ings of the 39th ACM SIGPLAN Conference on Programming Language Design and Imple- 543

mentation. pp. 603–616 (2018). 544

17. MF Cusumano-Towner, FA Saad, AK Lew, VK Mansinghka, Gen: a general-purpose proba- 545

bilistic programming system with programmable inference in Proceedings of the 40th acm sig- 546

plan conference on programming language design and implementation. pp. 221–236 (2019). 547

18. N Gothoskar, et al., 3dp3: 3d scene perception via probabilistic programming in NeurIPS. 548

(2021). 549

19. T Zhi-Xuan, J Mann, T Silver, J Tenenbaum, V Mansinghka, Online bayesian goal inference 550

for boundedly rational planning agents. Adv. Neural Inf. Process. Syst. 33, 19238–19250 551

(2020). 552

20. MF Cusumano-Towner, A Radul, D Wingate, VK Mansinghka, Probabilistic programs for in- 553

ferring the goals of autonomous agents. arXiv preprint arXiv:1704.04977 (2017). 554

21. BM Lake, R Salakhutdinov, JB Tenenbaum, Human-level concept learning through probabilis- 555

tic program induction. Science 350, 1332–1338 (2015). 556

22. TD Kulkarni, P Kohli, JB Tenenbaum, V Mansinghka, Picture: A probabilistic programming 557

language for scene perception in Proceedings of the ieee conference on computer vision and 558

pattern recognition. pp. 4390–4399 (2015). 559

23. N Roy, et al., From machine learning to robotics: Challenges and opportunities for embodied 560

intelligence. arXiv preprint arXiv:2110.15245 (2021). 561

24. M Cusumano-Towner, B Bichsel, T Gehr, M Vechev, VK Mansinghka, Incremental inference 562

for probabilistic programs in Proceedings of the 39th ACM SIGPLAN Conference on Program- 563

ming Language Design and Implementation. pp. 571–585 (2018). 564

25. AK Lew, M Cusumano-Towner, VK Mansinghka, Recursive monte carlo and variational infer- 565

ence with auxiliary variables. arXiv preprint arXiv:2203.02836 (2022). 566

26. R Ranganath, S Gerrish, D Blei, Black box variational inference in Artificial intelligence and 567

statistics. (PMLR), pp. 814–822 (2014). 568

27. D Wingate, ND Goodman, DM Roy, LP Kaelbling, JB Tenenbaum, Bayesian policy search 569

with policy priors in Twenty-second international joint conference on artificial intelligence. 570

(2011). 571

28. T Rainforth, TA Le, JW van de Meent, MA Osborne, F Wood, Bayesian optimization for 572

probabilistic programs. Adv. Neural Inf. Process. Syst. 29 (2016). 573

29. M Riesenhuber, T Poggio, Hierarchical models of object recognition in cortex. Nat. neuro- 574

science 2, 1019–1025 (1999). 575

30. C Zhuang, et al., Unsupervised neural network models of the ventral visual stream. Proc. 576

Natl. Acad. Sci. 118, e2014196118 (2021). 577

31. DLK Yamins, et al., Performance-optimized hierarchical models predict neural responses in 578

higher visual cortex. Proc. Natl. Acad. Sci. 111, 8619–8624 (2014). 579

32. CF Cadieu, et al., Deep neural networks rival the representation of primate it cortex for core580

visual object recognition. PLoS computational biology 10, e1003963 (2014).581

33. R Rajalingham, A Piccato, M Jazayeri, The role of mental simulation in primate physical582

inference abilities. bioRxiv (2021).583

34. GR Yang, MR Joglekar, HF Song, WT Newsome, XJ Wang, Task representations in neural584

networks trained to perform many cognitive tasks. Nat. neuroscience 22, 297–306 (2019).585

35. CL Alan L. Yuille, Limitations of deep learning for vision, and how we might fix them (2021).586

36. U of California Los Angeles., Can artificial intelligence tell a teapot from a golf ball? (2019).587

37. T Serre, Deep learning: The good, the bad, and the ugly. Annu. review vision science (2019).588

38. JS Bowers, et al., Deep problems with neural network models of human vision (2022).589

39. DL Yamins, JJ DiCarlo, Eight open questions in the computational modeling of higher sensory590

cortex. Curr. Opin. Neurobiol. 37, 114–120 (2016) Neurobiology of cognitive behavior.591

40. A Kurakin, I Goodfellow, S Bengio, Adversarial examples in the physical world (2016).592

41. BBC, Uber in fatal crash had safety flaws say us investigators (2019).593

42. Guardian, Tesla driver dies in first fatal crash while using autopilot mode (2016).594

43. A Pouget, K Zhang, S Deneve, PE Latham, Statistically efficient estimation using population595

coding. Neural Comput. 10, 373–401 (1998).596

44. WJ Ma, JM Beck, PE Latham, A Pouget, Bayesian inference with probabilistic population597

codes. Nat. neuroscience 9, 1432–1438 (2006).598

45. D Pecevski, L Buesing, W Maass, Probabilistic inference in general graphical models through599

sampling in stochastic networks of spiking neurons. PLoS computational biology 7, e1002294600

(2011).601

46. D Pecevski, W Maass, Learning probabilistic inference through spike-timing-dependent plas-602

ticity. eneuro 3 (2016).603

47. L Buesing, J Bill, B Nessler, W Maass, Neural dynamics as sampling: a model for stochas-604

tic computation in recurrent networks of spiking neurons. PLoS computational biology 7,605

e1002211 (2011).606

48. R Legenstein, W Maass, Ensembles of spiking neurons with noise support optimal probabilis-607

tic inference in a dynamically changing environment. PLOS Comput. Biol. 10, 1–27 (2014).608

49. VK Mansinghka, EM Jonas, JB Tenenbaum, Stochastic digital circuits for probabilistic infer-609

ence. Massachussets Inst. Technol. Tech. Rep. MITCSAIL-TR 2069 (2008).610

50. EM Jonas, Ph.D. thesis (Massachusetts Institute of Technology) (2014).611

51. V Mansinghka, E Jonas, Building fast bayesian computing machines out of intentionally612

stochastic, digital parts. arXiv preprint arXiv:1402.4914 (2014).613

52. P Redgrave, et al., Goal-directed and habitual control in the basal ganglia: implications for614

parkinson’s disease. Nat. Rev. Neurosci. 11, 760–772 (2010).615

53. J Chrobak, G Buzsáki, Gamma oscillations in the entorhinal cortex of the freely behaving rat.616

J. Neurosci. 18, 388–398 (1998).617

54. SW Hughes, V Crunelli, Just a phase they’re going through: The complex interaction of618

intrinsic high-threshold bursting and gap junctions in the generation of thalamic α and θ619

rhythms. Int. J. Psychophysiol. 64, 3–17 (2007).620

55. P Thaker, JB Tenenbaum, SJ Gershman, Online learning of symbolic concepts. J. Math.621

Psychol. 77, 10–20 (2017).622

56. J Tenenbaum, Rules and similarity in concept learning. Adv. neural information processing623

systems 12 (1999).624

57. F Rieke, D Warland, R de Ruyter van Steveninck, W Bialek, Spikes: Exploring the neural625

code. (MIT Press), (year?).626

58. MA Phillips, et al., A synaptic strategy for consolidation of convergent visuotopic maps. Neu-627

ron 71, 710–724 (2011).628

59. CF Stevens, Quantal release of neurotransmitter and long-term potentiation. Cell 72, 55–63629

(1993).630

60. Y Zhang, et al., Asymmetric ephaptic inhibition between compartmentalized olfactory recep-631

tor neurons. Nat. communications 10, 1–16 (2019).632

61. A Blot, B Barbour, Ultra-rapid axon-axon ephaptic inhibition of cerebellar purkinje cells by the633

pinceau. Nat. neuroscience 17, 289–295 (2014).634

62. G Major, ME Larkum, J Schiller, Active properties of neocortical pyramidal neuron dendrites.635

Annu. review neuroscience 36, 1–24 (2013).636

63. G Major, A Polsky, W Denk, J Schiller, DW Tank, Spatiotemporally graded nmda spike/plateau637

potentials in basal dendrites of neocortical pyramidal neurons. J. neurophysiology 99, 2584–638

2601 (2008).639

64. AL Barth, JF Poulet, Experimental evidence for sparse firing in the neocortex. Trends neuro-640

sciences 35, 345–355 (2012).641

65. S Sakata, KD Harris, Laminar structure of spontaneous and sensory-evoked population ac-642

tivity in auditory cortex. Neuron 64, 404–418 (2009).643

66. NMM Amorim Da Costa, K Martin, Whose cortical column would that be? Front. neu-644

roanatomy, 16 (2010).645

67. A Naka, H Adesnik, Inhibitory circuits in cortical layer 5. Front. neural circuits 10, 35 (2016).646

68. XJ Wang, GR Yang, A disinhibitory circuit motif and flexible information routing in the brain.647

Curr. opinion neurobiology 49, 75–83 (2018).648

69. GR Yang, JD Murray, XJ Wang, A dendritic disinhibitory circuit mechanism for pathway-649

specific gating. Nat. communications 7, 1–14 (2016).650

70. A Bahramisharif, et al., Propagating neocortical gamma bursts are coordinated by traveling651

alpha waves. J. Neurosci. 33, 18849–18854 (2013).652

71. M Vinck, et al., Gamma-phase shifting in awake monkey visual cortex. J. neuroscience 30,653

1250–1257 (2010).654

72. J Lisman, O Jensen, The theta-gamma neural code. Neuron 77, 1002–1016 (2013).655

73. C Andrieu, GO Roberts, The pseudo-marginal approach for efficient monte carlo computa-656

tions. The Annals Stat. 37, 697–725 (2009).657

74. H Zhang, AJ Watrous, A Patel, J Jacobs, Theta and alpha oscillations are traveling waves in658

the human neocortex. Neuron 98, 1269–1281 (2018).659

75. J O’Keefe, ML Recce, Phase relationship between hippocampal place units and the eeg theta660

rhythm. Hippocampus 3, 317–330 (1993).661

76. MW Jones, MA Wilson, Phase precession of medial prefrontal cortical activity relative to the662

hippocampal theta rhythm. Hippocampus 15, 867–873 (2005).663

77. K Ok, K Liu, N Roy, Hierarchical object map estimation for efficient and robust navigation in 664

2021 IEEE International Conference on Robotics and Automation (ICRA). (IEEE), pp. 1132– 665

1139 (2021). 666

78. M Schrimpf, et al., Brain-score: Which artificial neural network for object recognition is most 667

brain-like? BioRxiv, 407007 (2020). 668

79. I Yildirim, M Belledonne, W Freiwald, J Tenenbaum, Efficient inverse graphics in biological 669

face processing. Sci. advances 6, eaax5979 (2020). 670

80. AD Bolton, et al., Elements of a stochastic 3d prediction engine in larval zebrafish prey cap- 671

ture. ELife 8, e51975 (2019). 672

81. H Zwaka, et al., Covert attention to obstacles biases escapes via the mauthner cell. bioRxiv 673

(2022). 674

82. DF Goodman, R Brette, Brian: a simulator for spiking neural networks in python. Front. 675

neuroinformatics, 5 (2008). 676

83. M Stimberg, R Brette, DF Goodman, Brian 2, an intuitive and efficient neural simulator. eLife 677

8, e47314 (2019). 678

84. F Saad, M Cusumano-Towner, V Mansinghka, Estimators of entropy and information via infer- 679

ence in probabilistic models in International Conference on Artificial Intelligence and Statistics. 680

(PMLR), pp. 5604–5621 (2022). 681

85. M Wick, A McCallum, Query-aware mcmc. Adv. Neural Inf. Process. Syst. 24 (2011). 682

86. FA Saad, MF Cusumano-Towner, U Schaechtle, MC Rinard, VK Mansinghka, Bayesian syn- 683

thesis of probabilistic programs for automatic data modeling. Proc. ACM on Program. Lang. 684

3, 1–32 (2019). 685

87. MA Fischler, RC Bolles, Random sample consensus: a paradigm for model fitting with appli- 686

cations to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981). 687

88. MF Cusumano-Towner, VK Mansinghka, Using probabilistic programs as proposals. arXiv 688

preprint arXiv:1801.03612 (2018). 689

89. A Lew, M Agrawal, D Sontag, V Mansinghka, Pclean: Bayesian data cleaning at scale 690

with domain-specific probabilistic programming in International Conference on Artificial In- 691

telligence and Statistics. (PMLR), pp. 1927–1935 (2021). 692

90. P Dayan, GE Hinton, Using expectation-maximization for reinforcement learning. Neural 693

Comput. 9, 271–278 (1997). 694

91. M Hoffman, A Doucet, N Freitas, A Jasra, Bayesian policy learning with trans-dimensional 695

mcmc. Adv. neural information processing systems 20 (2007). 696

92. N Kantas, J Maciejowski, A Lecchini-Visintini, Sequential monte carlo for model predictive 697

control in Nonlinear model predictive control. (Springer), pp. 263–273 (2009). 698

93. D Wingate, ND Goodman, DM Roy, LP Kaelbling, JB Tenenbaum, Bayesian policy search 699

with policy priors in Twenty-second international joint conference on artificial intelligence. 700

(2011). 701

94. YA Ma, Y Chen, C Jin, N Flammarion, MI Jordan, Sampling can be faster than optimization. 702

Proc. Natl. Acad. Sci. 116, 20881–20885 (2019). 703

Preprint. In preparation for submission to a journal.

A

C

 Model-Based

Proposal

Data-Driven

Proposal

Scene Renderer

Retinal

Data

Image

Likelihood

Single-Pixel Scorer,

Pseudo-Marginalizing

Auxiliary Variables f1, f2

1 per particle

Hybrid

Proposal

...

...

...

...

Weight Multiplier &

Score Normalizer

Resampler

ri, j

u1 u2

u1 u2

di, j di, j

B

D

Fig. 7. Scaling up to mental physics simulation and inverse 2D graphics. (A) Hybrids of data-driven and model-driven inference scale better (top, red)
than either data-driven or model-driven inference on its own. (B) The hybrid proposal closely approximates the exact Bayes filter, whereas the data-driven proposal struggles
when the distinguished object is not visible. (C) The spiking neural Monte Carlo model combines a data-driven neural network (for bottom-up proposals) with top-down
model-based inference. Accurate scoring of low-probability data (arising either when data is noisy or the internal model has large errors) is handled by nesting spiking
neural Monte Carlo circuits for fast data-driven inference-based scoring (inset on right) within slower spiking neural Monte Carlo circuits for updating scene variables. (D)
Inference-based scoring, in which spiking neural Monte Carlo inference over auxiliary variables is used to estimate rare event probabilities, scales to much lower probability data
than simple Monte Carlo.

Pa
rti

cl
e

In
de

x

0
1
2
3
4

Time (ms)
0 100 200 300 400 500 600

Timestep
0 1 2

Pa
rti

cl
e

Pr
ob

ab
ilit

y

0.0

0.5

1.0

Timestep
0 1 2

N
um

be
r o

f S
pi

ke
s

0

5

10

15

Po
si

tio
n

2

4

6

8

10

Time
0 1 2

Ve
lo

ci
ty

-2

0

2

Particle
Probability

spikes

spike
counts

Position value
(per particle)

Velocity value
(per particle)

Fig. 8. Exact decoding of weights and probabilities (top) in a dynamically weighted
Monte Carlo spiking code (bottom) requires a time-varying non-linear decoder. Spike
rate does not always correlate with probability. For example, the probability of the
red particle (top) increases significantly from timestep 1 to timestep 2, even when
spike count (middle) drops so significantly that it is visible on the spike raster (bottom).
Converting importance weights to probabilities requires normalization against the

whole set of weights, i.e. pt(xi) = ft(wti) with ft(wti) =
wt
i∑
j
wt
j

. Thus if all

other particles lose nearly all of their weight, the remaining particle’s probability will
increase, even if its weight drops somewhat significantly.

Preprint. In preparation for submission to a journal.

(a)

Fast Sequential Importance Sampling

...

P Q

Z1
t-1

ZK
t-1

Yt

Z’ 1
t-1

Z’ K
t-1

Particle k

P Q

Slower Cognitive MCMC Rejuvenation

~50 ms ~250 ms
(~50 ms per block)

...

...

RESA
M

PLE

Particle 1

Particle N1

T1(z’ ; z)

RESA
M

PLE

Particle 1

Particle N1

Tm(z’ ; z)

...

RESA
M

PLE

Particle 1

Particle N1

T1(z’ ; z)

RESA
M

PLE

Particle 1

Particle N1

Tm(z’ ; z)

RESA
M

PLE

(b)
(a) Exact Bayesian Inference (b) Resample-Move SMC with Particle

Gibbs Rejuvenation (this paper)
(c) Particle filtering (collapses)

Fig. 9. Online Bayesian concept learning via hybrids of data-driven proposals with iterative, model-based MCMC. (top) Inference relies
on fast data-driven proposals followed by model-based MCMC, using proposals that update small subsets of highly-coupled variables via sequential Monte Carlo with multiple
particles. (bottom) This architecture makes it possible to explore a broad space of resource-rational, neurally mappable online approximations (55) to exact Bayesian inference
(bottom, left) in a classic model of human concept learning (56). The spiking neural Monte Carlo circuit presented here (bottom, middle) better matches both exact Bayesian
inference and the behavioral data from (55) than standard particle filtering (bottom, right), which fails to converge in this large hypothesis space.

	Spiking neural Monte Carlo
	Weighted Monte Carlo spiking codes
	Massively parallel micro-scale spiking assemblies and micro-circuits for individual latent variables
	Massively parallel meso-scale spiking networks for high-dimensional probabilistic programs
	Massively parallel macro-scale spiking circuits for real-time sequential Monte Carlo

	Scaling via hybrids of data-driven and model-driven inference
	Discussion
	Scaling to richer forms of cognition and learning
	Risk-sensitive control, action selection, and planning via inference
	Fundamental limits on scale and efficiency

	Materials and Methods

