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Abstract

There is a widespread need for sound, flexible
frameworks for Monte Carlo inference. This
paper introduces SMCP3, a sequential Monte
Carlo framework that broadens the class of
strategies practitioners can employ to update
particles from iteration to iteration, relative
to existing frameworks like resample-move
SMC (Gilks & Berzuini, 2001) and SMC sam-
plers (Del Moral et al., 2006). In SMCP3,
proposal kernels can be general probabilistic
programs, which differ from traditional pro-
posal densities in that they may sample many
auxiliary variables, and may apply determin-
istic post-processing to calculate a proposed
update. We have implemented our frame-
work in the Gen probabilistic programming
platform: given probabilistic programs that
specify target distributions, forward kernels,
and reverse kernels, our implementation fully
automates the sound computation of incre-
mental importance weights. To illustrate the
effectiveness of SMCP3 algorithms, we ap-
ply our framework in two domains. First, we
use it for online state-estimation, using pro-
posal programs based on Langevin ascent to
reduce the bias in log marginal likelihood es-
timates relative to resample-move SMC with
Langevin rejuvenation. Second, we demon-
strate an SMCP3 algorithm that yields more
robust online clustering in Dirichlet process
mixture models than strong SMC baselines.

1 Introduction

This paper aims to enable probabilistic program-
mers to easily implement custom sequential Monte
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Carlo (SMC) algorithms that draw on and extend
sophisticated techniques such as MCMC rejuvena-
tion (24) and paired forward and reverse Markov ker-
nels (11, 14). The framework we introduce, called
SMCP3, automates the implementation of particle up-
dates for proposals specified by general probabilis-
tic programs—including proposal kernels that sample
auxiliary variables, lack tractable marginal probability
densities, and incorporate deterministic transforma-
tions—by applying techniques from probabilistic pro-
gramming. SMCP3 simultaneously provides automa-
tion for time-consuming, error-prone aspects of algo-
rithm implementation and expands the range of pro-
posals that algorithm designers can easily experiment
with. It thus has the potential to bring modern SMC
methods to the rapidly growing audience of proba-
bilistic programmers, and to enable SMC experts to
explore more complex techniques.

We illustrate the value of custom SMC with proba-
bilistic program proposals with examples from state-
space modeling and mixture modeling (30, 53). We
show that custom SMCP3 samplers can achieve bet-
ter marginal likelihood estimates compared to strong
SMC baselines, on both synthetic and real-world
datasets. For state-space models, we exhibit an
SMCP3 algorithm that combines gradient-based pro-
posals with a simple reverse kernel to yield improved
importance weights relative to resample-move ap-
proaches (24). For mixture models, we give an SMCP3

algorithm that uses a split-merge proposal with a cus-
tom reverse kernel to improve over locally optimal
“Gibbs-style” SMC updates for each new datapoint.

Contributions. This paper contributes:

1. The SMCP3 mathematical framework (Section 2),
which shows how to compute valid weights when
proposals are general probabilistic computations
that may not admit tractable marginal densities.

2. An algorithm for automating SMCP3 in proba-
bilistic programming systems, and an implemen-
tation in Gen (Section 3).

3. Example SMCP3 algorithms for state-space and
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Figure 1: Left: In most treatments of SMC, particle update proposals are specified as kernels K : X → Y with
analytically tractable densities k(x → y). To support probabilistic program proposals, we formalize SMCP3 in
terms of more general probabilistic computations K : X ⇝ Y , which sample auxiliary variables, then transform
them deterministically. Right: SMCP3 generalizes Del Moral et al. (12, 14), by supporting K and L kernels
specified as probabilistic computations, rather than kernels with densities. In Section 3, we show how to automate
the computation of the incremental weight ŵ when P̃ , K and L are given as probabilistic programs.

mixture models, which exploit SMCP3’s new de-
grees of freedom and outperform strong resample-
move and particle filter baselines (Section 4).

2 The SMCP3 Algorithm

Consider a sequence P̃1, . . . , P̃T of unnormalized mea-
sures, defined over corresponding measurable spaces
X1, . . . , XT .

1 We assume reference measures µt on Xt

(e.g., the Lebesgue measure, if Xt is Rn) with respect
to which each P̃t has a density, p̃t. The goal of SMC
is to develop weighted particle approximations to each
P̃t, that is, collections {(xt

i, w
t
i)}Ni=1 such that integrals∫

Xt
f(x)P̃t(dx) can be approximated unbiasedly, and

ideally with low variance, by f̂ =
∑N

i=1 w
t
if(x

t
i).

2

1Readers may be familiar with particle filters (in which
Xt = St for some state space S), or Del Moral et al. (14)’s
SMC samplers (in which the state spaceXt does not vary in
time). In our setting, the state spaces may vary arbitrarily.

2In Bayesian applications, Xt is the latent space of
a generative model, and P̃t is the unnormalized pos-
terior obtained by conditioning the model on observed
data. To estimate a normalized posterior expectation, self-
normalization is required, yielding a biased but consistent

estimator,
∑

wt
if(x

t
i)∑

wt
i

. The denominator is an unbiased es-

Sequential Monte Carlo algorithms (1, 6, 11, 13, 17, 49)
successively approximate each measure in this se-
quence, using the particles for the previous mea-
sure as starting points to form the particles for the
next measure. After initializing a particle collec-
tion {(x1

i , w
1
i )}Ni=1 via importance sampling targeting

P̃1, SMC alternates between resampling steps (16),
in which promising particles are selected to serve as
the basis for future inferences, and updating steps, in
which resampled particles are independently updated,
to form an approximation to the next target.

Algorithm 1 presents our variant of SMC, called
SMCP3. The key mathematical novelty in SMCP3 is
in how particle updates are implemented, and how in-
cremental importance weights are computed. The aim
of this new development is to enable us, in Section 3, to
interpret user-specified probabilistic programs as par-
ticle update strategies, and automate the necessary
sampling and weight calculations. To that end, we for-
mulate updates not in terms of proposal densities but
rather probabilistic computations (Fig. 1, left), which
may sample many auxiliary variables, then apply de-
terministic post-processing to generate an update.

timate of the normalization constant
∫
P̃t(dx), also known

as the evidence or marginal likelihood of the observed data.
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Algorithm 1 SMCP3

Require: Sequence of target densities p̃t w.r.t. µt

Require: Initial proposal Q1 w/ density q1 w.r.t. µ1

Require: Forward proposals Kt : Xt−1 ⇝ Xt × ULt

Require: Reverse proposals Lt : Xt ⇝ Xt−1 × UKt

Require: Number of particles N
Ensure: (xt

i, w
t
i)

N
i=1 properly weighted for P̃t

1: ▷ Initialize particles with importance sampling
2: for i = 1, . . . , N do
3: x1

i ∼ Q1

4: w1
i ←

p̃1(x
1
i )

q1(x1
i )

5: end for
6: ▷ Main SMC loop
7: for t = 2, . . . , T do
8: ▷ Draw ancestor indices
9: (ati)

N
i=1 ∼ Categorical([wt−1

1 , . . . , wt−1
N ])

10: ▷ Compute average weight

11: W t−1 ←
∑N

i=1 wt−1
i

N
12: for i = 1, . . . , N do
13: x̃← xt−1

at
i

14: ▷ Draw auxiliary randomness uKt

15: uKt
∼ QKt

(x̃→ ·)
16: ▷ Apply deterministic transformation
17: (xt

i, uLt)← fKt(x̃, uKt)
18: ▷ Compute density ratio

19: ŵt
i ←

p̃t(x
t
i)qLt (x

t
i→uLt )

p̃t−1(x̃)qKt (x̃→uKt )

20: ▷ Incorporate change-of-variables factor

21: ŵt
i ← ŵt

i ·
d(µt⊗µLt )

d((µt−1⊗µKt )◦f
−1
Kt

)
(xt

i, uLt
)

22: ▷ Weight update
23: wt

i ←W t−1ŵt
i

24: end for
25: end for

Definition 1 (Probabilistic computation). A proba-
bilistic computation K : X ⇝ Y between measurable
spaces X and Y is a tuple (UK , QK , fK), where:

• UK = (|UK |,UK , µK) is a measure space of auxil-
iary randomness,

• QK : X → UK is a probability kernel with density
qK with respect to µK , and

• fK : X × UK → Y is a measurable map.

To run a probabilistic computation, we sample u ∼
QK(x→ ·), then compute y = fK(x, u). Importantly,
we require only that QK admit a tractable density, not
the marginal distribution over y.

In SMCP3, users specify particle updates by defining
a pair of probabilistic computations:

Definition 2 (SMCP3 move). An SMCP3 move from
P̃t−1 to P̃t is a pair of probabilistic computations

Kt = (UKt , QKt , fKt) : Xt−1 ⇝ Xt × ULt and Lt =
(ULt , QLt , fLt) : Xt ⇝ Xt−1 × UKt , such that

• P̃t ⊗QLt
is absolutely continuous with respect to

(P̃t−1 ⊗QKt) ◦ f−1
Kt

, and3

• on the support of P̃t−1 ⊗QKt
, fKt

= f−1
Lt

.

The K computation. Kt’s role in Alg. 1 is to trans-
form a value xt−1 from the particle approximation
of P̃t−1 into a value xt for the particle approxima-
tion of P̃t. To do so, it samples an auxiliary variable
uKt ∈ UKt (L15) and then applies a measurable map
fK to (xt−1, uKt) (L17). Computing an importance
weight for this proposal would traditionally require in-
tractable marginalization over auxiliary randomness in
uKt

, and over parts of xt−1 not retained in the update.
To avoid this intractable integral, Kt also returns an
auxiliary variable uLt (L17). Formally, the role of uLt

is to ensure that fKt ’s restriction to P̃t−1⊗QKt ’s sup-
port is injective. Intuitively, uLt

records information
about (xt−1, uKt

) “lost” during the update. The “in-
formation loss” can arise for two reasons:

1. The information in the previous state xt−1 may
not all be propagated to the next state. For ex-
ample, a Kt that implements an MCMC-like up-
date may overwrite components about the previ-
ous state. Then ULt can store the part of the old
state xt−1 that was overwritten.

2. There may be several paths through the compu-
tation Kt that yield the same proposed xt, so the
auxiliary randomness uKt

is impossible to recover
exactly after the update. In this case, ULt

can be
a space parameterizing the ways that a particular
output xt could be generated from an input xt−1.

The L computation. Similar to L kernels in
Del Moral et al. (14), the Lt computation’s overall
goal is to “guess” how Kt generated a given xt; in the
case of SMCP3, this means outputting a hypothesized
previous particle xt−1, and hypothesized auxiliary ran-
domness uKt . It does this by sampling randomness
uLt ∼ QLt(x

t → ·) and computing (xt−1, uKt) =
fLt

(xt, uLt
). Since fLt

and fKt
are inverses, given Kt,

QLt
is the only remaining degree of freedom; Proposi-

tion 1 gives a local optimality condition for this choice.
Note that Alg. 1 never needs to run Lt; Lt is only used
to compute importance weights.

3Following Kallenberg (26), we overload P ⊗ Q to de-
note either the product of two measures, or the product of
a measure P over X with a kernel Q : X → U , to obtain
a measure on the product space X × U . For measurable
A ⊆ X × U , (P ⊗ Q)(A) =

∫∫
A
P (dx)Q(x, du) Further-

more, we use the standard notation µ ◦ f−1 to denote the
pushforward of µ by f , whether µ is a measure or a kernel.
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Computing weights. Given an SMCP3 move, we
can use Kt to propose a new particle value xt (L14-
17), but we still need a way of computing a new weight
wt so that (xt, wt) is properly weighted for P̃t.

Definition 3 (properly weighted (47)). A random
variable (x,w) taking values in X × R≥0 is properly

weighted for a measure P̃ over X if for all measurable
f : X → R, E[wf(x)] =

∫
X
f(x)P̃ (dx).

The following justifies Alg. 1’s weight computation:

Theorem 1. Let (K,L) be an SMCP3 move from
P̃t−1 to P̃t. If (x,w) is properly weighted for P̃t−1, then
letting uK ∼ QK(x → ·), and (x′, uL) = fK(x, uK),
the pair (x′, ŵ · w) is properly weighted for P̃t, where

ŵ =
p̃t(x

′)qL(x
′ → uL)

p̃t−1(x)qK(x→ uK)
· d(µt ⊗ µL)

d((µt−1 ⊗ µK) ◦ f−1
K )

(x′, uL).

The first factor is a density ratio, and the second is
a change-of-variables correction for the bijection fK .
When the spaces Xt, Xt−1, UK and UL are Euclidean
with Lebesgue reference measures µ, and fK is differ-
entiable, the correction is the absolute value of fK ’s
Jacobian determinant. Correction factors can also
be computed in more general settings (52), including
when fK can be expressed as a program in a Turing-
complete language with piecewise-differentiable prim-
itives (31). In Sec. 3, we show how to compute the
correction when models and moves are defined as prob-
abilistic programs in the Gen language (10).

Locally optimal L kernels. The choice of ULt is
often straightforward, but the kernel QLt

may be less
so. The following gives qualitative guidance:

Proposition 1. Let Rt be the measure (P̃t−1⊗QKt
)◦

f−1
K over Xt⊗ULt

. If Rt = (Rt ◦π−1
1 )⊗QLt

, where π1

is the projection map onto the first coordinate (here,
Xt), then QLt is locally optimal : among all choices
of QLt

, it minimizes the variance of the incremental
weight ŵ.4

In other words, the locally optimal choice of QLt at-
tempts to recover the lost information ULt

according
to its conditional distribution given xt. This choice of
QLt

makes the incremental weight depend only on xt,

not the auxiliary randomness: ŵ = dP̃t

d(Rt◦π−1
1 )

(xt).

Convergence of SMCP3. SMC algorithms that use
SMCP3 updates can be formulated as Feynman-Kac
models (13) (see supplement), so we can use standard
arguments (6) to reason about their convergence.

4The optimality is only local in that, by incorporat-
ing knowledge about the specific update kernels applied
at steps 1 through t − 1, it is possible to design QLt ker-
nels that —although they yield higher-variance incremen-
tal weights—reduce the overall variance of wt = ŵ ·W t−1.

Proposition 2 (Central Limit Theorem). If P̃t, Kt,
Lt are such that Alg. 1’s incremental weights ŵt

i are
bounded above, then for any continuous, bounded
function φ : Xt → R, there exists σ s.t.

√
N

(
1

N

N∑
n=1

wt
nφ(x

t
n)−

∫
Xt

φ(x)P̃t(dx)

)
D→ N (0, σ)

as N →∞, where
D→ is convergence in distribution.

3 Automating SMCP3

The previous section presented a mathematical frame-
work for designing SMC algorithms with particle up-
dates based on probabilistic computations. In this sec-
tion, we show how to automate correct implementa-
tions of SMCP3 algorithms, when the target distribu-
tions and particle updates are specified as source code
in a probabilistic programming language.

Gen programs. We work with the PPL Gen (10), in
which a probabilistic program is an ordinary (deter-
ministic) Julia function, augmented with the syntac-
tic construct {name} ∼ distribution. This state-
ment causes Gen to sample a random value from a
distribution (e.g., normal(0, 4)), and to associate the
value internally with the name name. When execut-
ing a Gen program, we can turn on tracing to obtain
two outputs: the final value returned by the program,
as well as a trace, recording the names and values of
all encountered random variables. For example, when
run with argument t = 2, the Gen program model

in Fig. 2a might generate the trace Trace("x1" ⇒
0.4, "y1" ⇒ 1.1, "x2" ⇒ 0.2, "y2" ⇒ 0.3). It is clear
that the values in the trace will vary from run to run,
but because programs may make control flow decisions
on the basis of their samples, even the number of sam-
pling statements encountered may vary (and with it,
the set of variable names included in the trace).

The measure space of traces. The set of execution
traces that Gen programs can generate form a mea-
surable space T of probabilistic program traces. Each
trace τ ∈ T is given by a list of key-value pairs, associ-
ating the names of random variables (strings) with the
values they assumed in a particular execution. In the
supplement, we define a reference measure µT over T,
with respect to which every Gen program’s sampling
distribution is absolutely continuous, enabling rigorous
reasoning about the densities of these distributions.

Gen programs as probabilistic computations. A
Gen probabilistic program taking arguments in space
A and returning values in space B implements a prob-
abilistic computation P = (UP , QP , fP ) : A ⇝ B.
QP (a → ·) is the distribution over traces induced by
the P , UP = T is the space of traces, and fP : A×T→
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@gen function model(t)
x = 0
for step=1:t
x = {"x$(step)"} ~ normal(x, 1.0)
y = {"y$(step)"} ~ normal(x, 1.0)

end
end

(a) Gen implementation of a simple dynamic model.

function smc_move(t, new_obs)
@gen function K(tr)
# Sample u from dynamics model
prev_x = tr["x$(t-1)"]
u = {"u"} ~ normal(prev_x, 1.0)
# Unadjusted Langevin move to sample an x
x = {"x"} ~ ULA(u, prev_x, new_obs)
# Update trace with newly proposed x
tr["x$(t)"] = x
# Return proposed trace & aux. randomness
return (tr, Trace("u" => u))

end
@gen function L(tr)
# Guess the aux. var that K sampled
prev_x = tr["x$(t-1)"]
u = {"u"} ~ normal(prev_x, 1.0)
# Return previous time step's trace, and
# trace of K that would bring us to this
# trace.
return (Trace(["x$(i)" => tr["x$(i)"]

for i in 1:t-1]...),
Trace("u" => u, "x" => tr["x$(t)"]))

end
return (K, L)

end

(b) An SMCP3 move, specified using Gen programs.

Figure 2: Code for Section 4.1’s SMCP3 algorithm.

B is a function which computes the return value of the
program, given its inputs and the random choices it
made during execution (as captured in its trace). For
any Gen program, Gen automates the implementation
of several useful operations, including:

1. SAMPLE-TRACE(P, a): Sample τ ∼ QP (a→ ·).
2. EVALUATE-LOGPDF(P, a, τ): Evaluate log qP (a →

τ) = log d(QP (a→·))
dµT

(τ).

3. COMPUTE-RETVAL(P, a, τ): Compute fP (a, τ).

We review the implementations of these operations
(which are standard in PPLs) in the supplement.

Defining sequences of unnormalized measures.
Given an argument a, a probabilistic program P de-
fines a normalized probability distribution over traces
containing many variables. Just as a joint probability
density p(x, y) over a pair can be recast as an unnor-
malized density p̃(x) = p(x,y) for a fixed observation
y, we can specify unnormalized measures in Gen by fix-
ing a trace y ∈ T of observations, mapping the names
of some of the variables that P samples to observed
values. In particular, we define P̃y as the unnormal-
ized kernel with density p̃y(a → τ) = qP (a → τ ⊕ y)

Algorithm 2 Automated SMCP3 update

Require: model Gen program P
Require: previous and current observations yt−1, yt
Require: (x,w) properly wtd. for P̃ yt−1(t− 1→ ·)
Require: Gen programs Kt, Lt specifying move
Ensure: (x′, w′) properly weighted for P̃ yt(t→ ·)
1: uKt

← SAMPLE-TRACE(Kt, x)
2: ((x′, uLt

), Ĵ)← AD(COMPUTE-RETVAL(Kt, x, uKt
))

3: log qKt
← EVALUATE-LOGPDF(Kt, x, uKt

)
4: log p̃t−1 ← EVALUATE-LOGPDF(P, t− 1, x⊕ yt−1)
5: log p̃t ← EVALUATE-LOGPDF(P, t, x′ ⊕ yt)
6: log qLt

← EVALUATE-LOGPDF(Lt, x
′, uLt

)
7: log r ← log p̃t − log p̃t−1 + log qLt

− log qKt

8: logw′ ← logw + log r + log |det Ĵ |
9: return (x′, logw′)

w.r.t. µT, where ⊕ merges two traces with disjoint sets
of names. (If τ shares any names with y, we define
p̃y(τ) to be 0.) A user defines a sequence of unnor-
malized distributions via (1) a probabilistic program
P with argument space A = {1, . . . , T} (the argument
gives the position in the sequence), and (2) a sequence
(yt)

T
t=1 of observation traces for each time. This yields

sequence (P̃yt(t→ ·))Tt=1.

Specifying K and L. For each t ∈ {2, . . . , T}, the
user can specify Kt : T⇝ T× T and Lt : T⇝ T× T,
as probabilistic programs that accept traces as input
and return pairs of traces as output. See Fig. 2b for
an example. (Since both the models and proposals are
defined as probabilistic programs, the state spaces Xt

and the auxiliary spaces UK , UL from Sec. 2 are all T.)
The condition that fKt and fLt can be probabilistically
fuzz-tested on automatically generated input traces.

Automating SMCP3. Given model probabilistic
program P , observations yt−1 and yt, and Kt and Lt,
Algorithm 2 automates the SMCP3 update from a par-
ticle (x,w) properly weighted for P̃t−1 = P̃yt−1(t −
1 → ·) to a particle (x′, w′) properly weighted for
P̃t = P̃yt(t → ·). It samples uK ∼ QKt(x → ·)
(L1), computes (x′, uL) = fKt(x, uK) (L2), evalu-
ates model and proposal densities (L3-6),5 and fi-
nally computes the particle weight update (L7-8). To
compute the weight update ŵ from Theorem 1, step
(4) must compute the change-of-measures correction

d(µTt⊗µT)

d((µTt−1
⊗µT)◦f−1

Kt
)
(x′, uL), where Tt is the subset of T

supported by P̃t, and µTt
is the restriction of µT to Tt.

Theorem 2 gives a concrete expression for this factor.

Theorem 2. Let T2
1 and T2

2 be measurable subsets of
T × T, and let µ1 and µ2 be restrictions of µT ⊗ µT

5On the cost of Alg. 2 computing 4 trace densities: Gen
features optimizations that exploit cancellations in density
ratios to achieve asymptotic speedups where possible (10).
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to these subsets. Suppose f : T2
1 → T2

2 is a PAP
bijection6 and that µ2 is absolutely continuous with
respect to µ1 ◦ f−1. Then

dµ2

d(µ1 ◦ f−1)
(f(τ1, τ2)) = |det(Jfτ1,τ2)(ρ(τ1)++ ρ(τ2))|,

where ρ : T → ⊔d∈NRd extracts all the real-valued
entries in a trace into a vector, ϕτ : R|ρ(τ)| → T re-
places the real entries in τ with values from a vector,
and fτ1,τ2 : R|ρ(τ1)|+|ρ(τ2)| → R|ρ(τ1)|+|ρ(τ2)| accepts as
input the concatenation of v1 ∈ R|ρ(τ1)| and v2 ∈
R|ρ(τ2)|, computes τ ′1, τ

′
2 = f(ϕτ1(v1), ϕτ2(v2)), and

then returns the vector concatenation ρ(τ ′1) ++ ρ(τ ′2).

Line 2 of Algorithm 2 uses AD to to compute the Ja-
cobian Ĵ = JfKtx,uKt

; per Theorem 2, |det Ĵ | is the

change-of-measure term needed to compute ŵ.7

4 Examples

The examples in this section demonstrate, in multi-
ple domains, that probabilistic program proposals can
improve inference relative to strong SMC baselines
that use proposals with tractable densities. They also
demonstrate that resample-move SMC algorithms can
often be improved by moving complex proposal logic
out of MCMC rejuvenation steps, into SMCP3 moves.

4.1 Online inference in state-space models

Model. We first study the 1D linear Gaussian dy-
namic model from Fig. 2a. We take x0 = 0, and for
t > 0, set xt ∼ N (xt−1, 1) and yt ∼ N (xt, 1). The tth

target is the filtering posterior pt(x1:t | y1:t).

SMCP3 algorithm. We set Kt and Lt as in Fig. 2b.
As illustrated in Fig. 4, Kt extends x1:t−1 with a
new value xt, generated by performing an unadjusted
Langevin ascent move from a random initial position
u ∼ N (xt−1, 1). Our simple choice of Lt ignores xt

when proposing u, generating it from N (xt−1, 1).

Baselines. We compare to two baselines: a stan-
dard bootstrap particle filter, which proposes xt from
its prior, and a resample-move SMC algorithm, which

6PAP stands for piecewise analytic under analytic par-
tition (29), which can be defined not only in the Euclidean
setting but also more generally (31), including for T. Every
function implementable in a programming language with
PAP primitives, if statements, and recursion is PAP (31).

7Our implementation uses forward-mode AD (54): it
replaces every real number in the input traces x and uKt

with dual numbers, runs COMPUTE-RETVAL (i.e., fKt), and
then reads out the dual numbers that end up stored in
the returned traces x′, uLt , to fill out the Jacobian matrix

Ĵ . (We delete the dual components of the dual numbers
before applying further operations to x′ and uLt on L5-6.)
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Figure 3: Example particles and log-marginal-
likelihood estimates over time from online state esti-
mation using the algorithms from Section 4.1.

Bootstrap Particle Filter SMCP3 K Kernel

SMCP3 L Kernel

Noisy observed position
Particle position value

Position proposal distribution
Move along gradient of posterior

Figure 4: 2D variant of the SMCP3 kernels from Fig-
ure 2. Top left: at t = 4, a new noisy position is
observed. Top middle: the bootstrap particle filter
proposes latent position zt (blue circle) from the dy-
namics model given zt−1. Top right: the SMCP3

kernel improves on this proposal by moving along
∇ logP (zt|yt, zt−1) (arrow), and sampling z′t (black
circle) nearby. Bottom: L proposes zt given z′t.

additionally runs Metropolis-adjusted Langevin ascent
(MALA) rejuvenation on xt after each step.

Results. Fig. 3 illustrates inference on one exam-
ple sequence of observations, and Fig. 5b plots log
marginal likelihood estimates, averaged over many
synthetic datasets, for varying numbers of particles.
Our algorithm significantly outperforms the bootstrap
filter, and consistently yields better results than the
stronger resample-move baseline. Figure 5a sheds light
on why this is. The bootstrap particle filter proposes
from the prior, and lands only a few particles near
the mode of the posterior. The resample-move algo-
rithm’s MALA rejuvenation successfully moves these
proposals closer to the mode, but does not update par-
ticle weights to reflect this progress, so promising par-
ticles may be lost during resampling. SMCP3 also uses
Langevin ascent to move the particles, but accounts for
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Figure 6: Object tracking from depth video in a non-
differentiable state-space model.

this move in its weights, so that after resampling the
particle cloud will better reflect the new posterior.

Non-differentiable variant. In Fig. 6, we also con-
sider a variant of the model that uses a likelihood based
on a non-differentiable renderer, for object tracking
from depth video. Instead of performing a Langevin
move from a randomly initialized point, the K pro-
posal program samples a proposed point from a coarse
grid centered at a random location, based on relative
likelihoods of all the grid’s points. As in the toy differ-
entiable model, this improves over the bootstrap par-
ticle filter baseline; see supplement for details.

4.2 Online inference in mixture models

Model. We next consider a sequence of collapsed
Dirichlet process mixture models (DPMMs), each in-
corporating one additional datapoint. The tth model
places a CRP ({1, . . . , t}) prior over partitions Πt of
{1, . . . , t}, and for each cluster C ∈ Πt, generates data
(yi)i∈C jointly from an exchangeable likelihood F (y).8

We observe data y1:t and wish to infer the partition Πt.

8We use three different likelihoods F , to model synthetic
Gaussian data, real-world astronomical data, and strings
in a Medicare dataset; see supplement for details.
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Figure 7: SMCP3 kernels for data-clustering (Sec-
tion 4.2). Top: new datapoint y6 (grey) is added to a
particle where datapoints y1:5 form a single (blue) clus-
ter. Locally-optimal SMC either chooses to (A) cre-
ate a new (red) cluster containing y6 (unlikely), or (B)
merge y6 into the blue cluster. In case (B), our SMCP3

K kernel may then perform a cluster split move. Bot-
tom: the SMCP3 L kernel sees a clustering containing
y6 (pink), and must propose what clustering of y1:5

had existed before the K kernel incorporated y6.

SMCP3 algorithm. Fig. 7 illustrates our algorithm.
Kt accepts as input a partition Πt−1 of the first t− 1
datapoints and proposes a partition Πt that incorpo-
rates the new datapoint yt. To do so, it first per-
forms a “Gibbs” assignment of yt to an existing clus-
ter C∗ ∈ Πt−1 or to a new cluster; if a new cluster,
Kt stops early and proposes Πt := Πt−1 ∪{{t}}. Oth-
erwise, Kt decides between splitting C∗, merging C∗
with another cluster, or leaving C∗ as is. This choice is
made based on an importance-sampling estimate of the
total probability of all states in which C∗ is split; see
supplement for details. Lt identifies cluster C ′

∗ ∈ Πt

containing t, then chooses to either split, merge, or not
change it to recover C∗.

Baselines. We compare to two baselines: an SMC
algorithm that uses the locally optimal “Gibbs” pro-
posal to incorporate yt into the clustering (without
splitting or merging), and a resample-move extension
which additionally applies split/merge rejuvenation.
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Est. of logP (y1:T )
Galaxy data (random order)
Locally Optimal SMC -421.97 ± 1.13
Resample-Move Split/Merge -422.00 ± 0.72
SMCP3 Split/Merge -422.28 ± 0.96

Galaxy data (sorted)
Locally Optimal SMC -425.78 ± 1.75
Resample-Move Split/Merge -422.07 ± 1.03
SMCP3 Split/Merge -422.18 ± 1.04

Medicare data
Locally Optimal SMC -40383.00 ± 688.77
Resample-Move Split/Merge -14233.61 ± 53.10
SMCP3 Split/Merge -13882.10 ± 0.27

Table 1: Results for the mixture model, reporting the
estimate each algorithm returns of the log-marginal-
likelihood of a dataset y1:T ; higher is better.

Example Particle from SMCP3
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Locally Optimal Single-Datapoint SMC
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Figure 8: Clustering via locally optimal SMC, and
SMCP3, on an illustrative synthetic dataset. Pan-
els 1, 2: example particles showing clusterings y1:T

from each algorithm; each point (x, y) means data-
point yx = y. Panel 3: mean number of inferred
clusters from 10 runs of each algorithm, over time.
SMCP3 consistently finds all 4 clusters likely under
the posterior; the baseline only finds 3. Panel 4: poor
inference is reflected in lower estimated logP (y1:T ).

Results. Table 1 shows estimates of the log marginal
likelihood produced by each algorithm on two real
datasets. As Fig. 8 illustrates, the locally optimal
baseline’s greedy assignment of points to clusters can
lead it to get stuck in local modes, a phenomenon we
also observe in the Medicare dataset (40) and in patho-
logical data orderings on the Galaxy dataset (8, 18).
Both SMCP3 and resample-move are able to escape
local modes, but as in Sec. 4.1, we see evidence on
the Medicare and synthetic datasets that SMCP3 com-

putes better weights after splits or merges, leading to
improved log likelihood estimates.

5 Related Work and Discussion

SMC. SMCP3 provides automation for implementors
of a broad variety of SMC algorithms, including SMC
samplers (14), resample-move SMC (24), and move-
reweight SMC (39). Unlike this prior work, SMCP3

can be used to compute proper SMC weights for pro-
posals that incorporate auxiliary variables (21, 22, 32)
and deterministic transformations. Many algorithms
use SMC moves as building blocks, including exten-
sions to SMC (5, 27, 34) and pseudomarginal algo-
rithms (2, 33); SMCP3 moves could be incorporated
into these algorithms. SMCP3 has broad coverage,
but does not cover techniques that adapt targets or
proposals based on the current particle cloud (3, 20),
which may compromise proper weighting.

Probabilistic programming. Many PPLs support
automated SMC for models specified as probabilis-
tic programs (10, 23, 35, 38, 41, 50, 56, 58, 59).
Some also have support for restricted classes of cus-
tom SMC with proposals defined as probabilistic pro-
grams (4, 10, 43, 45, 57). These languages’ restrictions
prohibit proposal programs that sample auxiliary vari-
ables or propose deterministic transformations of sam-
ples. Stites et al. (57) present a set of combinators
for defining samplers, including a propose combina-
tor for specifying custom SMC proposals. Although
these proposals can use auxiliary variables, they are
ignored for weight computation, yielding sound but
high-variance weights (equivalent to using a particular
sub-optimal choice of L kernel in SMCP3). SMCP3 is
inspired by automated involutive MCMC (9), an anal-
ogously general framework for automated, custom MH
with probabilistic program proposals.

Discussion. SMCP3 gives inference algorithm design-
ers a more flexible framework than previous formula-
tions, and also automates implementation details. Ini-
tial experiments show that custom SMCP3 proposals
using the new degrees of freedom it offers can yield
more accurate inference than strong baselines. One
important area for future research is to improve speed
by applying PPL compilation techniques (10, 25, 36,
44, 50, 60) and by leveraging massively parallel hard-
ware (19, 36, 46, 51). It also may be possible to au-
tomatically tune the runtime and robustness of prob-
abilistic program proposals, using data-dependent (8)
and model-averaged (15) estimators of SMC inference
accuracy, or recently introduced methods for differ-
entiating through SMC (7, 28, 37, 48, 55, 61). We
hope SMCP3 helps practitioners apply advanced SMC
to complex modeling problems. We also hope it en-
courages experts to experiment with proposals that
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leverage richer probabilistic computations, for exam-
ple via Markov kernels based on backtracking search,
optimization, and model-based planning algorithms.
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Supplementary Material

This supplement contains:

• Omitted proofs (of Theorem 1, Theorem 2, and Proposition 2), in Appendices A, B, and D.

• A definition of the measurable space T of traces, and the reference measure µT (Appendix C).

• A brief introduction to the standard techniques Gen uses to automate the SAMPLE-TRACE, EVAL-LOGPDF,
and COMPUTE-RETVAL operations (Appendix E).

• Full details on experimental setup, for each experiment in Section 4 (Appendix F).

A Proof of Theorem 1

Definition 4. Let µ, ν be measures on X. Then R(µ, ν), the restriction of µ to the support of ν, is the measure
mapping a set E ∈ X to infA∈X {µ(E \A) | ν(A) = 0}.
Remark 1. Note that R(µ, ν) is absolutely continuous with respect to ν, and that if some other measure P
is absolutely continuous with respect to both µ and ν, it is absolutely continuous with respect to R(µ, ν), and

dP
dR(µ,ν) =

dP
dµ .

Lemma 1. Let P and Q be probability measures on spaces X and Y respectively. Let Q̃ = ZQ ·Q and P̃ = ZP ·P
denote unnormalized versions of these measures, with densities p̃ and q̃ with respect to reference measures µX and
µY . Let S = Q◦f−1 for some measurable bijection f : X → Y , and suppose that P̃ is absolutely continuous with

respect to S. Then (y, w) is properly weighted for ZP

ZQ
P , where y = f(x), x ∼ Q, and w = p̃(y)

q̃(x) ·
dR(µY ,S)

d(R(µX ,Q)◦f−1) (y).

Proof. Let x ∼ Q and y = f(x). We note:

dP

dS
(y) =

dP

dR(µY , S)
(y) · dR(µY , S)

dS
(y) (Radon-Nikodym chain rule)

=
p̃(y)

ZP
· dR(µY , S)

d(R(µX , Q) ◦ f−1)
(y) · d(R(µX , Q) ◦ f−1)

d(Q ◦ f−1)
(y) (density of P , Radon-Nikodym chain rule)

=
p̃(y)

ZP
· dR(µY , S)

d(R(µX , Q) ◦ f−1)
(y) · dR(µX , Q)

dQ
(f−1(y)) (pushforward by measurable bijection)

=
p̃(y)

ZP
· dR(µY , S)

d(R(µX , Q) ◦ f−1)
(y) · ZQ

q̃(x)
(density of Q, x = f−1(y))

=
ZQ

ZP
· w. (definition of w)

On the first line, we use the fact that since P is absolutely continuous with respect to both µY and S, it is
absolutely continuous with respect to R(µY , S). On the second line, we use the fact that since S ≪ µX ◦ f−1

and S ≪ Q ◦ f−1, S ≪ (R(µX , Q) ◦ f−1), and therefore R(µY , S)≪ S ≪ (R(µX , Q) ◦ f−1).

Multiplying by ZP

ZQ
on each side, we have that w = ZP

ZQ

dP
dS (y), so for any measurable g : Y → R≥0, we have

E[wg(y)] =
∫

ZP

ZQ

dP
dS (y)g(y)S(dy) =

∫
g(y)(ZP

ZQ
P )(dy). This is precisely the criterion for (y, w) to be properly

weighted for ZP

ZQ
P .

Theorem 1. Let (K,L) be an SMCP3 move from P̃t−1 to P̃t. If (x,w) is properly weighted for P̃t−1, then
letting uK ∼ QK(x→ ·), and (x′, uL) = fK(x, uK), the pair (x′, ŵ · w) is properly weighted for P̃t, where

ŵ =
p̃t(x

′)qL(x
′ → uL)

p̃t−1(x)qK(x→ uK)
·

dR(µt ⊗ µL, (P̃t−1 ⊗QK) ◦ f−1
K )

d(R(µt−1 ⊗ µK , P̃t−1 ⊗QK) ◦ f−1
K )

(x′, uL).
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Proof. We apply Lemma 1, with X := Xt−1 × UK , Y := Xt × ULt , f := fK , P̃ := P̃t ⊗ QL, and Q̃ :=
P̃t−1 ⊗ QK . This tells us that for all measurable g : Xt × UL → R≥0, Ex∼Pt−1,uK∼QK

[ŵ · g(fK(x, uK))] =∫ ZPt

ZPt−1
g(x′, uL)(Pt ⊗QL)(d(x

′, uL)). In particular, for all h : Xt → R≥0, we can take g(x′, uL) = h(x′), and get

that Ex∼Pt−1,uK∼QK
[ŵ · h(π1(fK(x, uK)))] =

∫ ZPt

ZPt−1
h(x′)Pt(dx

′).

We now apply the assumption that (x,w) is properly weighted for P̃t−1 = ZPt−1
Pt−1 to rewrite the expectation

w.r.t. Pt−1 as an expectation w.r.t. the pair (x,w):

∫
ZPt

ZPt−1

h(x′)Pt(dx
′) = Ex∼Pt−1,uK∼QK

[ŵ ·h(π1(fK(x, uK)))] = E(x,w)[
1

ZPt−1

·w ·EuK∼QK
[ŵ ·h(π1(fK(x, uK)))]].

By linearity of expectation, we can rewrite to get:

1

ZPt−1

∫
ZPth(x

′)Pt(dx
′) =

1

ZPt−1

E[w · ŵ · h(π1(fK(x, uK)))].

Canceling the 1
ZPt−1

and rewriting ZPtPt as P̃t, we get the desired equation, that E[w ·ŵ ·h(x′)] =
∫
h(x′)P̃t(dx

′).

B Proof of SMCP3 Convergence

B.1 SMCP3 moves define Feynman Kac models

To reuse standard SMC convergence arguments from the literature, like Proposition 2, we first prove that
Algorithm 1 implements SMC for a certain Feynman-Kac model. We first define Feynman-Kac models, following
(6), but using slightly different notation and terminology for consistency with this paper.

Definition 5 (Feynman-Kac model.). A Feynman-Kac model is a 4-tuple (Q1, (Qt)
T
t=2, G1, (G

T
t=t)), where

1. Q1 is a probability measure on a measurable space X1

2. Qt : Xt−1 → Xt is a kernel between 2 measurable spaces

3. G1 : X1 → R≥0 is a measurable “potential” function on X1

4. Gt : Xt−1 ×Xt → R≥0
is a measurable “potential” function on measurable product space Xt−1 ×Xt

This model is said to target the sequence of measures (Pt)
T
t=1 on (Xt)

T
t=1, where for any measurable A ⊆ X1,

P1(A) =

∫
A

G1(x1)Q1(dx1) (1)

and for any t > 1, for any measurable A ⊆ Xt,

Pt(A) =

∫
Xt−1

∫
A

Gt(xt−1, xt)Qt(xt−1 → dxt)Pt−1(dxt−1). (2)

Note that in the definition of a Feynman-Kac model from (6), each space Xt must be the same space X . This
restriction is immaterial because given any Feynman-Kac model defined as above, we can obtain a Feynman-Kac
model under the definition from (6) by taking X = ⊕T

t=1Xt, and extending Q1 and G1 and each Qt and Gt to
measures/kernels/functions on this full space. Note also that what we call Q1 and Qt, (6) calls M0 and Mt−1,
and what we call Pt, (6) calls Qt−1.

Theorem 3 (The Feynman-Kac model yielded by SMCP3). Consider any sequence (P̃t)
T
t=1 of finite measures

on measurable spaces X1, . . . , XT admitting densities p̃t w.r.t base measures µt on each Xt. Let Q1 be a measure
on X1 s.t. P̃1 << Q1, admitting density q1 w.r.t. µ1. Let (Kt, Lt)

T
t=2 be a sequence s.t. (Kt, Lt) is an SMCP3
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move from P̃t−1 to P̃t (Def. 2), where Kt = (UKt , QKt , fKt) and Lt = (ULt , QLt , fLt), and where QKt and QLt

admit densities qKt and qLt w.r.t. measures µKt and µLt .

Then there exists a Feynman-Kac model (Q1, (Qt)
T
t=2, G1, (G

T
t=t) targetting the sequence (Pt)

T
t=1, where P1 = P̃1

and ∀t > 1,Pt = P̃t ⊗QLt . In particular, one such Feynman-Kac model is the one with components as follows:

1. Q1 = Q1

2. Q2(x1 → A) = Q̄2(x1 → A) and ∀t > 2, Qt((xt−1, ut−1)→ A) = Q̄t(xt−1 → A)

3. G1(x1) = p̃1(x1)/q1(x1)

4. G2(x1, (x2, uL2
)) = g2(x1, (x2, uL2

)) and ∀t > 2, Gt((xt−1, uLt−1
), (xt, uLt

)) = gt(xt−1, (xt, uLt
))

In the above, Q̄t(xt−1 → ·) is the kernel from Xt−1 → Xt×ULt
implemented by sampling uKt

∼ QKt
(xt−1 → ·)

then running fKt
,

Q̄t(xt−1 → A) =

∫
UKt

1fKt (xt−1,uKt )∈AQKt(xt−1 → duKt),

and gt : Xt−1 × ULt
→ R≥0 is the function yielding the importance-weight update from Theorem 1 for the tth

SMCP3 move,

gt(x, (x
′, uL)) =

p̃t(x
′)qLt

(x′ → uL)

p̃t−1(x)qKt(x→ uK)
· d(µt ⊗ µLt

)

d((µt−1 ⊗ µKt) ◦ f−1
Kt

)
(x′, uL) where ( , uK) = fLt(x

′, uL).

Proof. Equation 1 certainly holds since Q1 and G1 implement an importance sampler for P̃1. Thus all we need
is to verify that Equation 2 holds. Consider any measurable A ⊆ Xt × ULt

. The target measure on this set is

Pt(A) = (P̃t ⊗QLt
)(A) :=

∫
Xt

∫
ULt

1(xt,uLt )∈AQLt
(xt → duLt

)P̃t(dxt)

Writing P̄t(A) to refer to the R.H.S. of Eq. 2, so our goal is to show Pt = P̄t, we have

P̄t(A) =

∫
Xt−1×ULt−1

∫
A

gt(xt−1, (xt, uLt
))Q̄t(xt−1 → dxt, duLt

)Pt−1(dxt−1, duLt−1
)

=

∫
Xt−1

∫
ULt−1

∫
A

gt(xt−1, (xt, uLt))Q̄t(xt−1 → dxt, duLt)QLt−1(xt−1 → duLt−1)P̃t−1(dxt−1)

=

∫
Xt−1

∫
A

gt(xt−1, (xt, uLt))Q̄t(xt−1 → dxt, duLt)P̃t−1(dxt−1)

=

∫
Xt−1

∫
UKt

1fKt (xt−1,uKt )∈Agt(xt−1, fKt
(xt−1, uKt

))p̃t−1(xt−1)QKt
(xt−1 → duKt

)µt−1(dxt−1)

=

∫
Xt−1

∫
UKt

1fKt (xt−1,uKt )∈Agt(xt−1, fKt(xt−1, uKt))qKt(xt−1 → uKt)p̃t−1(xt−1)µKt(duKt)µt−1(dxt−1)

=

∫
f−1
Kt

(A)

d(µt ⊗ µLt)

d((µt−1 ⊗ µKt
) ◦ f−1

Kt
)
(fKt

(xt−1, uKt
))(µt−1 ⊗ µKt

)(dxt−1, duKt
)

· qKt
(xt−1 → uKt

)p̃t−1(xt−1) ·
p̃t(xt)qLt

(xt → uLt
)

qKt(xt−1 → uKt)p̃t−1(xt−1)
where (xt, uLt

) = fKt
(xt−1, uKt

)

=

∫
A

d(µt ⊗ µLt)

d((µt−1 ⊗ µKt
) ◦ f−1

Kt
)
(xt, uLt

)((µt−1 ⊗ µKt
) ◦ f−1

Kt
)(dxt, duLt

) · p̃t(xt)qLt
(xt → uLt

)

=

∫
A

p̃t(xt)qLt
(xt → uLt

)d(µt ⊗ µLt
)(dxt, duLt

)

=

∫
Xt

∫
ULt

1(xt,uLt )∈AQLt(xt → duLt)P̃t(dxt)

= Pt(A)
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B.2 Proof of Proposition 2

Proposition 2. For any t ∈ {1, . . . , T}, let {(wt
n, x

t
n)}∞n=1 be the particle cloud generated by Alg. 1 at timestep t.

If P̃t, Kt, Lt, and Q1 are such that Alg. 1’s incremental weights ŵt
i are bounded above, then for any continuous,

bounded function φ : Xt → R, there exists σ s.t.

√
N

(
1

N

N∑
n=1

wt
nφ(x

t
n)−

∫
Xt

φ(x)P̃t(dx)

)
D→ N (0, σ)

as N →∞, where
D→ is convergence in distribution.

Proof. Let un
Lt

denote the uL values generated for each particle at time t by Alg. 1. By Theorem 3 above
and Proposition 11.2 in (6), for any SMCP3 algorithm in which the incremental importance weights are upper
bounded at each timestep, for any continuous function φ′ : Xt × ULt → R, for some σ > 0,

√
N

(
1

N

N∑
n=1

wt
nφ

′(xt
n, u

n
Lt
)−

∫
Xt

φ′(x, uLt
)(P̃t ⊗QLt

)(dx, du)

)
D→ N (0, σ)

All that remains is to observe that any continuous bounded φ : Xt → R can be extended to a continuous,
bounded function φ′ : Xt × ULt

→ R (by φ′(x, u) = φ(x)), and that∫
φ′(x, u)(P̃t ⊗QLt

)(dx, du) =

∫
φ(x)P̃t(dx).

C The Measurable Space of Traces

For ease of presentation, we assume Gen has just a handful of basic value types over which primitive distributions
are defined: the reals R, the natural numbers N, and the Booleans B. For each such type τ , we choose a measure
space (Vτ ,Vτ , µτ ) of values, where µτ is a reference measure. For the reals, we choose µR = Λ (the Lebesgue
measure), and for discrete types we choose the counting measure. We let K denote a countable set of names for
random variables (e.g., the strings). Every execution of a program encounters some set of sampling statements,
each with a name and a distribution over some type, and we call these paths trace shapes:

Definition 6. A trace shape s ∈ S is a finite set of entries (k, τ), such that k ∈ K is a name (and no two entries
share the same name), and τ is a type.

A trace is a trace shape, together with its values:

Definition 7. A trace t ∈ T is a trace shape s and a tuple v ∈×(k,τ)∈s
Vτ , with one value for each name in s.

We equip T with the disjoint union σ-algebra, where the union is taken over the countable set of trace shapes,
and each element of the union is a product space×(k,τ)∈s

Vτ . For each trace shape s, we can define the product

reference measure µs =
⊗

(k,τ)∈s µτ . Then define reference measure µT over all traces as

µT(B) =
∑
s∈S

µs({v | (s,v) ∈ B}).

D Proof of Theorem 2

D.1 PAP functions

The statement of the Theorem includes the assumption that a certain function f is PAP, or piecewise-analytic-
under-analytic-partition. We first review Lee et al. (29)’s definition of PAP functions on Euclidean spaces, then
use the tools from Lew et al. (31) to extend the definition to spaces of traces.
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Definition 8. Let U ⊆ Rn and V ⊆ Rm. A function f : U → V is (real-)analytic at a point x ∈ U if it is smooth
at x and there exists an open neighborhood I of x on which f is equal to its Taylor series. If f is analytic at
every point in its domain U , then we say f is a (real-)analytic function.

Definition 9. An analytic set A ⊆ Rn is a set of the form {x ∈ U | f1(x) ≥ 0 ∧ · · · ∧ fk(x) ≥ 0}, where U is an
open subset of Rn, k ≥ 0 is a finite natural number, and each fi : U → R is analytic on U .

Definition 10. Let U ⊆ Rn and V ⊆ Rm. A partial function f : U ⇀ V is piecewise analytic under analytic
partition, or PAP, if there exists a countable family {(Ai, Ui, fi)}i∈I , where:

• each Ui is an open subset of U ,

• each Ai is an analytic subset of Ui,

• the Ai are pairwise disjoint and form a partition of the domain of f ,

• each fi : Ui → Rm is analytic, and

• for each i, for all x ∈ Ai, f(x) = fi(x).

Remark 2. If we view the Booleans B as a subset {0, 1} of R, and similarly view the naturals N and integers
Z as subsets of R, this definition can be applied directly to functions that accept and return vectors holding
both continuous and discrete values. (These functions are not defined when their discrete inputs are set to
“invalid” values, but Definition 10 applies to partial functions, so this is not an issue.) Using Definition 10, we
can characterize which of these functions on hybrid discrete-continuous spaces are PAP. Let DI be the discrete
indices of the input vector u and DO be the discrete indices of the output vector v. For any assignment vD to
the discrete indices of the output vector, let UvD

⊆ U to be the preimage f−1({v ∈ V | v[DO] = vD}). Then, for
each assignment uD to the discrete components of the input vector u, we can consider the restriction fuD

vD
of f to

{u ∈ UvD
| u[DI ] = uD}. Because the discrete inputs and outputs are fixed for every vector in its domain, fuD

vD

can really be viewed as a function only of the continuous components in the input vector, into the continuous
part of the output vector. Unfolding the definition of PAP, it can be shown that f is PAP if and only if, for
every uD and vD, fuD

vD
is PAP.

The observations in Remark 2 can be generalized to support arbitrary countable unions of Euclidean spaces:

Definition 11. Let J,K be countable sets and let Xj ⊆ Rnj for each j ∈ J∪K. A partial function f : ⊔j∈JXj ⇀
⊔k∈KXk is PAP if, for each j ∈ J and k ∈ K, the function fj,k : {x ∈ Xj | ∃y ∈ Xk.f((j, x)) = (k, y)} → Xk

mapping x to π2(f((j, x))) is PAP.

Recall that T = ⊔s∈S(×(k,τ)∈s
Vτ ). Since each Vτ ⊆ R, we can view T as a particular subset of ⊔s∈SR|s|,

and similarly T × T as a subset of ⊔(s1,s2)∈S×SR|s1|+|s2|. Supposing U and V are subsets of T × T, a function

f : U → V can be viewed as a partial function f̂ : ⊔(s1,s2)∈S×SR|s1|+|s2| ⇀ ⊔(s1,s2)∈S×SR|s1|+|s2|, and we can
apply our definitions above to establish whether it is PAP.

Remark 3. We now work out the implications of this definition for functions f that accept and return pairs
of traces. The “discrete data” tD of a pair of traces t = (t1, t2) is a pair of trace shapes (s1, s2) and a pair
of assignments (v1D, v2D) to just the discrete parts of each trace. Fixing tD, the continuous data of the pair is
just a vector of reals, concatenating the real values from the first trace to the real values from the second trace.
Write nC(tD) for the total number of continuous values in the trace pair. For each possible input discrete data

tID and output discrete data tOD, there is a partial function f
tID
tOD

: RnC(tID) ⇀ RnC(tOD) that accepts as input the

continuous data for an input trace pair (whose discrete data is tID), and if f(tI) matches the output discrete
data tOD, outputs the continuous data of f(tI) (otherwise, it is undefined). Then f is PAP if each of these partial

functions f
tID
tOD

is PAP.

Remark 4. Suppose U and V are subsets of T × T and f : U → V is a PAP bijection, with PAP inverse

f−1 : V → U . Then each f
tID
tOD

is PAP and is the inverse of (f−1)
tOD
tID

.
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D.2 Change-of-variables for PAP bijections on subsets of T× T.

Lemma 2. Let µ, ν be measures over X and Y , and f : X → Y a measurable bijection, such that ν ≪ (µ◦f−1).
Let {Ai}i∈I be a countable family of subsets of X such that X \ ∪i∈IAi has µ-measure-zero. Further, let
g : Y → R≥0 be such that for each i, for all y ∈ f(Ai), g(y) =

dνi

d(µi◦f−1
i )

(y), where µi is the restriction of µ to Ai,

νi is the restriction of ν to f(Ai), and fi : Ai → f(Ai) is the restriction of f to Ai. Then g is a Radon-Nikodym
derivative of ν with respect to µ ◦ f−1.

Theorem 2. Let T2
1 and T2

2 be measurable subsets of T×T, and let µ1 and µ2 be restrictions of µT⊗µT to these
subsets. Suppose f : T2

1 → T2
2 is a PAP bijection and that µ2 is absolutely continuous with respect to µ1 ◦ f−1.

Then
dµ2

d(µ1 ◦ f−1)
(f(τ1, τ2)) = |det(Jfτ1,τ2)(ρ(τ1) ++ ρ(τ2))|,

where ρ : T → ⊔d∈NRd extracts all the real-valued entries in a trace into a vector, ϕτ : R|ρ(τ)| → T replaces
the real entries in τ with values from a vector, and fτ1,τ2 : R|ρ(τ1)|+|ρ(τ2)| → R|ρ(τ1)|+|ρ(τ2)| accepts as input the
concatenation of v1 ∈ R|ρ(τ1)| and v2 ∈ R|ρ(τ2)|, computes τ ′1, τ

′
2 = f(ϕτ1(v1), ϕτ2(v2)), and then returns the

vector concatenation ρ(τ ′1) ++ ρ(τ ′2).

Proof. We will use Lemma 2 to carve T2
1 into pieces, and prove the result separately for each piece.

For each tID, tOD, we have from Remark 4 that f
tID
tOD

is a PAP bijection from U ⊆ Rn → V ⊆ Rm, for some n

and some m. Then there is some partition of U into analytic subsets Aj of Rn; let J(tID,tOD) be the index set of

this partition. Then let I = {(tID, tOD, j) | j ∈ J(tID,tOD) ∧ Λ(A
(tOD,tID)
j ) > 0}, and define T2

(tID,tOD,j)
the set of pairs

of traces with discrete data tID and continuous data in A
(tOD,tID)
j . By Lemma 2, it suffices to show that for each

(tID, tOD, j),
dµ2 |f(T2

(tI
D

,tO
D

,j)
)

d(µ1 |T2

(tI
D

,tO
D

,j)

◦f−1
(tID,tOD,j)

)
(f(t1, t2)) = |det(Jft1,t2(ρ(t1) ++ ρ(t2)))|.

First, note that restricted to T2
(tID,tOD,j)

, g(t1, t2) := ρ(t1)++ρ(t2) is a bijection: the discrete data of (t1, t2) is fixed

to tID, and so even though g deletes this information by extracting only the continuous values from the traces,
it is injective and can be inverted by reattaching the discrete data tID. Indeed, for any (t1, t2) with discrete data
tID, ft1,t2 = g ◦ f ◦ g−1. So we have:

dµ2 |f(T2

(tI
D

,tO
D

,j)
)

d(µ1 |T2

(tI
D

,tO
D

,j)

◦f−1
(tID,tOD,j)

)
(f(t1, t2)) =

d(µ2 |f(T2

(tI
D

,tO
D

,j)
) ◦g−1)

d(µ1 |T2

(tI
D

,tO
D

,j)

◦f−1
(tID,tOD,j)

◦ g−1)
(g(f(t1, t2)))

=

d(µ2 |f(T2

(tI
D

,tO
D

,j)
) ◦g−1)

d((Λ ◦ (g−1)−1) ◦ f−1
(tID,tOD,j)

◦ g−1)
(g(f(t1, t2)))

=
dΛ

d(Λ ◦ (ft1,t2 |g(T2

(tI
D

,tO
D

,j)
))

−1)
(ft1,t2(g(t1, t2))),

where the first line uses the fact that g is a bijection, the second and third use the fact that µ1 ◦ (g−1)−1 is the
Lebesgue measure on the image (under g) of µ1’s support,

9 and the third also uses the fact that ft1,t2 = g◦f ◦g−1.
Since f is PAP, ft1,t2 |g(T2

(tI
D

,tO
D

,j)
) is real-analytic, and we can apply the standard change-of-variables formula for

pushforwards of the Lebesgue measure by differentiable bijections, yielding the desired Jacobian determinant.

9This is true because we defined µR := Λ when defining the reference measure µT for traces.
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E Standard PPL automation

Sampling and evaluating densities of traces. The Gen probabilistic programming system (10) automatically
generates procedures for sampling traces, evaluating densities of traces, and computing return values from traces.
The density computed by Gen is precisely the density of a program’s sampling distribution over traces with
respect to the reference measure µT. Roughly, these procedures work by overriding the behavior of {name} ∼
distribution statements:

• To SAMPLE-TRACE, initialize storage for an empty trace, and run the program. At each {name} ∼
distribution statement, draw a sample from the distribution and record it (and its type) in a trace
under name. When the program is finished, return both the trace and the return value.

• To EVAL-LOGPDF of a given trace t, initialize a weight to 1, and at each {name} ∼ distribution statement,
lookup the value v associated with the key name in the trace t, and multiply the weight by the density of
distribution at v. If any name is missing, or if after finishing execution the trace contains unvisited names,
return 0; otherwise, return the final weight.

• To COMPUTE-RETVAL given a trace t, run the program but instead of sampling, use the values already in the
trace (as for density evaluation). Once finished executing, return what the program returns.

F Experimental Details

All experiments were run on a commodity laptop with 32GB of RAM, using 8 cores. Every experiment presented
in Sec. 4 ran in under 10 minutes on our hardware.

F.1 Online inference in state-space models

F.1.1 Inference in a state-space model with a differentiable likelihood

This model, and the baseline inference algorithms we compare against, are described in section 4.1

SMCP3 inference algorithm. Our SMCP3 inference algorithm for this model is illustrated Fig. 4, and defined
in Gen pseudocode in Fig. 2. The space UKt of auxiliary randomness is R and the space of ULt is {∅} (there
is no auxiliary randomness for the L proposal). Algorithm 3 gives the K and L kernels for this algorithm in
mathematical notation. Given particle x1:t−1, the K kernel first samples an auxiliary u from the dynamics prior,
then samples xt via a step of Langevin ascent starting from u. It returns the updated particle x1:t = (x1:t−1..., xt),
and the only element of the auxiliary space ULt . The L kernel simply samples u ∼ P (·;xt−1) (ignoring xt).

Algorithm 3 SMCP3 kernels for Langevin particle extension.

Require: Langevin ascent step-size σ.
Require: Observation trajectory y1:t.
1: procedure K(x1:t−1)
2: u ∼ P (Xt = ·;xt−1) ▷ Sample an auxiliary position from the dynamics prior
3: ▷ Sample xt via a step of Langevin ascent, starting from u.

4: xt ∼ N (u+ σ2 ∂ logP (Xt=u,yt|xt−1)
∂u ),

√
2σ)

5: return ((x1:t−1..., xt), ∅)
6: end procedure
7: procedure L(x1:t)
8: u ∼ P (Xt = ·|xt−1)
9: return (x1:t−1, u)

10: end procedure

Experiment details. Fig. 3 shows an artificial observation trajectory generated by adding N (0, 0.8) noise
to each position in the hand-written vector [[0, 3, 6, 9, 12, 9, 12, 16, 18, 18, 20, 17]. (Fig 5b shows model-average
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results.). For this trajectory, fig. 3 shows the 1-σ band of the exact filtering posterior distribution over latent
states at each timestep (obtained via Kalman filtering), and 100 resampled particles and log-marginal-likelihood
estimates from our SMCP3 inference algorithm, resample-move SMC using MALA rejuvenation, and the boostrap
particle filter, each run with 4 particles. For the SMCP3 algorithm and MALA, we use Langevin-ascent step size
σ = 0.3.

Fig. 5a shows 200 particles generated at t = 1 by each inference algorithm, given y1 = 5. Each particle is
rendered at its x1 position, and at a y coordinate in the figure so it lands on the posterior curve for P (X1|y1).
Fig 5b shows log-marginal-likelihood estimates from each inference algorithm, averaged at each particle count
over 200 runs each of 20 random 10-step observation sequences generated from the model. All experiments use
multinomial resampling triggerred when the effective sample size falls below 1/5 the number of particles.

F.1.2 Inference in a state-space model with a rendering-based likelihood

Figure 6 shows inference results in a simple state-space model for tracking 3D objects from depth data, comparing
an SMCP3 algorithm (which is a variant of the algorithm from the previous section, but replacing the ULA step
with a grid-enumeration step because the likelihood is non-differentiable) to the bootstrap particle filter.

Model. Our motion model is used for tracking a single degree of freedom of the position of a cube in 3D space.
The position of the cube is (xt, 0, 0) where xt is a latent state that evolves according to Gaussian random walk
dynamics, x1 = 0; ∀t > 1, xt ∼ N (xt−1, 0.7). The observed data yt is a “point-cloud” of 200 3D positions
detected by a depth-camera (so yt ∈ R3×200). The likelihood P (yt|xt) is defined using the following generative
process. First, a deterministic renderer traces M rays from the camera to the scene, and records the coordinates
at which these rays first intersect the cube, producing a point cloud qt = [q1t , . . . , q

M
t ] ∈ R3×M . Then, the

observed point-cloud yt is generated from the following Gaussian mixture model:

p(yt|q1t , . . . , qMt ) =

200∏
j=1

M∑
i=1

1

M
N (yjt ; q

i
t, 10

−2I)

where yjt denotes the j-th column of yt.

SMCP3 inference algorithm. Alg. 4 gives the K and L proposals used by our SMCP3 algorithm. The K
kernel first proposes a position u from the dynamics model, then chooses one of a finite number of points on a
grid centered at u as the value for xt; the L kernel fills in the value of u by enumerating each one which could
have led to K returning xt.

Experiment details. Figure 6 shows frames of a real RGB-D video in which a box is sliding across the floor,
and inferred latent states from a simple enumeration-based inference algorithm, to illustrate the setup using real
data. The plot in figure 6 is generated using a synthetic observation trajectory generated from the model prior.
The cube side length was set to 0.5 units and the camera was positioned at (4, 0, 1.4) and oriented toward the
origin. The plot shows log marginal data likelihood results averaged across 10 independent inference runs from
the baseline and the SMCP3 inference algorithm.

F.2 Online inference in mixture models

We first give further details on our DPMM model, the baseline inference algorithms, and the details of the
experiments showcased in Sec. 4.2. We then detail the SMCP3 inference algorithm.

F.2.1 Model, Baselines, and Experiment Details

Section 4.2 describes the DPMM we use for online clustering. It has two parameters: (1) the parameter αD of the
Dirichlet process, and (2) the exchangeable likelihood F , which determines the distribution over data produced
by a single cluster. Specifically, for any F , there is a measurable value space (V,V, µV ), and F : ⊕n∈NV

n → R≥0

is the function s.t. F (v⃗) is the joint probability density of vector v⃗ w.r.t. µ
|v⃗|
V . (F restricted to the domain V n

is a probability density over n-long vectors; F is not a probability density over the whole space ⊕n∈NV
n.)

We run inference in an online manner, meaning that data is streamed into the inference algorithm over time, and
after seeing each subset y1:t of the data, the inference algorithm must output an approximation of P (Πt|y1:t),
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Algorithm 4 SMCP3 kernels for enumeration-based particle extension.

Require: Grid step size ϵ and range N .
Require: Observation trajectory y1:t.
1: procedure K(x1:t−1)
2: u ∼ P (·;xt−1) ▷ Sample an auxiliary position from the dynamics prior
3: ▷ Enumerate over the grid, starting from u, and evaluate the probability of each state.
4: D ← {} ▷ Initialize score dictionary.
5: for i = −N, . . . , N do
6: xi

t ← u+ iϵ ▷ Potential xt value in grid.
7: s← P (xi

t|xt−1)P (yt|xi
t) ▷ Joint probability score for this xt value.

8: D ← D ∪ {xi
t 7→ s}

9: end for
10: Sample xt ∼ PD, where PD is the distribution so PD(xt) ∝ D[xt].
11: return ((x1:t−1..., xt), ∅)
12: end procedure
13: procedure L(x1:t)
14: D ← {} ▷ Initialize score dictionary.
15: for i = −N, . . . , N do
16: ui ← xt + iϵ ▷ Potential u value in grid.
17: s← P (u|xt−1)
18: D ← D ∪ {xi

t 7→ s}
19: end for
20: Sample u ∼ PD, where PD is the distribution so PD(u) ∝ D[u].
21: return (x1:t−1, u)
22: end procedure

the posterior over possible partitions of data-indices {1, . . . , t}, given the first t datapoints.

Mixture-model likelihoods. We use three different F likelihoods in our experiments, two for modeling real
data (so V = R, with the regular sigma-algebra and Lebesgue measure) and one for modeling string data (so V
is the set of strings, equipped with the discrete sigma algebra and counting measure).

The first data-likelihood, F1, models a Gaussian data-cluster with an unknown mean µ ∼ N (µ0, σ
2
0) and a known

variance σ2. For any vector y⃗,

F1(y⃗) =

∫
R

∏
y∈y⃗

N (y;µ, σ2)N (dµ;µ0, σ
2
0).

The second data-likelihood, F2, models a Gaussian data-cluster with an unknown mean µ and an unknown
variance σ2. Parameters αy, β, ξ, and κ are introduced to control the prior over the cluster mean and variance.
For any vector y⃗,

F2(y⃗) =

∫
R

∫
R

∑
y∈y⃗

N (y⃗;µ, σ2)Γ(d(σ−2);αy, β)N (dµ; ξ, κ−2).

The third data-likelihood, F3, models a cluster of strings, by assuming there is some “ground-truth” string s∗,
and every string in the cluster is generated by applying a randomly-chosen number of “typos” to s∗. (As with
the µ and σ parameters above, the string s∗ is marginalized out in the likelihood function.) We use the exact
likelihood defined in (32) Sec. 5.2, we refer the reader there for details.

Locally-optimal single-datapoint SMC inference. The first inference baseline we experiment is roughly
analogous to an optimal particle filter in a state-estimation application. This SMC algorithm uses the following
proposal distribution to update a particle Πt−1 (a partition of {1, . . . , t − 1}) to a partition Πt of {1, . . . , t},
given datapoint yt. The proposal distribution either creates a new cluster containing only t, outputting Πt =
Πt−1 ∪ {{t}}, or adds t to an existing C∗ ∈ Πt−1 outputting Πt = Πt−1 \ {C∗} ∪ {C∗ ∪ {t}}. This proposal Q
chooses among these |Πt−1| + 1 options such that Q(Π) ∝ pt(Π, y1:t), where pt is the PDF of the probabilistic
program defining the DPMM, given argument t, at partition Π and data vector y1:t.
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Resample-move inference algorithm. As a second baseline, we turn the locally-optimal single-datapoint
SMC algorithm into a resample-move algorithm using an MCMC kernel. The MCMC kernel is a split/merge
kernel, that randomly selects two “chaperone” datapoints (42), and proposes a split (if they are in the same
cluster) or a merge (if they are in different clusters). To propose a split, a Gibbs scan on cluster assignments is
performed, processing points in sorted order to incorporate them into one of the two new clusters, seeded with
the chaperones (this Gibbs scan is done identically to in Qsplit in the SMCP3 algorithm described below). A
Metropolis-Hastings correction is applied to ensure the kernel is stationary.

SMCP3 inference algorithm. Our SMCP3 algorithm is fairly sophisticated, so we devote a whole subsection
(Sec. F.2.2) to it below.

Experiment details. Table 1 shows the results of mixture-model inference in two real-world datasets: a
standard benchmark dataset of real-valued Galaxy velocities (8, 18), and a data-cleaning dataset of 1k strings
from Medicare records (30).

To model the Galaxy dataset, we used likelihood F2 with αy = 0., β = 1/100, ξ = 1/2, κ = 1/2, and set the
Dirichlet process parameter αD to 1.0. We ran experiments on this dataset using 100-particle SMC; Table 1
shows the mean and empirical standard deviation of the log-marginal-likelihood estimates produced by each of
100 runs of 100-particle SMC, for each inference algorithm. We run inference both with data sorted high-to-low,
and with data in a randomly sampled order.

To model the Medicare dataset, we used likelihood F3, and set αD = 1.0. Table 1 shows the results of each
SMC algorithm on this dataset (using 32 particles for each baseline algorithm, and 2 particles for the SMCP3
algorithm), with means and empirical variances taken over 3 SMC runs for each inference algorithm.

Figure 8 shows results from 10 10-particle SMC inference runs, using the locally-optimal single-datapoint SMC
algorithm, and our SMCP3 algorithm, on synthetically generated data, using likelihood F1. We generated the
dataset shown in the figure from the DPMM with αD = 1.0, using F1 with µ0 = 0, σ0 = 6, and σ = 1; we ran
inference using αD = 1.0, µ0 = 0, σ0 = 106, and σ = 1. Because we ran inference using a prior which expects
clusters to be much farther away from each other than they are in the presented dataset, on small subsets
of the data (e.g. y1:10, rather than the full dataset y1:100), it is more likely under the posterior that nearby
clusters are explained as being a single data-cluster with some outliers. However, as more data is observed,
it becomes unlikely to have so many outliers, and hence becomes more likely that there are two surprisingly-
nearby clusters. Because the locally-optimal single-datapoint SMC algorithm cannot change which datapoints
are clustered together, it produces sub-optimal results on this data. This toy example is intended to illustrate
this failure mode —the locally optimal SMC algorithm labeling datapoints which should belong to a new cluster
as outliers from an existing cluster —which we also observe occurring in real datasets like the Medicare data.
Because our SMCP3 algorithm is able to split existing clusters into two, it does not suffer from this failure mode.

All experiments are run using multinomial sampling, triggered whenever the effective sample size falls below 1/5
the number of particles.

F.2.2 The SMCP3 inference algorithm

Our SMCP3 algorithm extends the above locally-optimal single-datapoint SMC move. Its K proposal first makes
this move, producing partition Π1

t ; in the case where this move outputs a partition assigning datapoint t to a
new singleton cluster, the K proposal terminates and outputs Πt = Π1

t . In the case where Π1
t was produced by

adding t to an existing cluster C∗, producing C ′
∗ = C∗ ∪ {t}, the K proposal then chooses between 3 ways of

producing a final state Πt from Π1
t : (1) K may split the cluster C ′

∗ into two new clusters, (2) K may merge C ′
∗

into another cluster C ∈ Π1
t \ {C ′

∗}, or (3) K may make no change, and output Π1
t . Our K only consider split

moves in which the index t ends up in a cluster with at least one other datapoint; if C ′
∗ only has 2 elements, split

moves are impossible. K makes this decision between splitting, merging, or staying, in the following manner.

Deciding whether to split, merge, or make no change. First, K enumerates every cluster C ∈ Π1
t \ {C ′

∗},
and for each of these, computes sC = pt(Π

C
t , y1:t), where Π

C
t = Π1

t \ {C ′
∗, C}∪{C ′

∗ ∪C} is the partition resulting
from merging C ′

∗ with C. These scores give the joint PDF for the partitions resulting from each possible merge
move. Second, K computes s∗ = pt(Π

1
t , y1:t), the joint PDF for the partition resulting from making no change
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to the existing partition. Finally K obtains an estimate ŝs of the total

ss =
∑

C′,C′′:C′∪C′′=C′
∗

pt(Π
C′,C′′

t , y1:t) where ΠC′,C′′

t = Π1
t \ {C ′

∗} ∪ {C ′, C ′′}.

This is the sum over every possible way of splitting C ′
∗ into two clusters C

′ and C ′′ of the joint PDF pt(Π
C′,C′′

t , y1:t)

of the partition ΠC′,C′′

t resulting from making this split. We describe our method of estimating ŝs below. The
final decision of whether to split C ′

∗, merge C ′
∗ with an existing cluster, or make no change to Π1

t , is made
such that the probability of doing some split move is proportional to ŝs, the probability of making no change is
proportional to s∗, and the probability of merging with any particular cluster C is proportional to sC . (That is,
this decision is made by sampling from a categorical distribution over |Π1

t \ {C ′
∗}|+ 2 possibilities.)

Selecting a particular split, and estimating the total score of all split moves. In the case where K
decides to split C ′

∗ into two new clusters, the K kernel must also decide on a particular partition of C ′
∗ into two

clusters C ′ and C ′′. Our K kernel actually makes this decision before deciding whether to split, merge, or stay,
at the same time as it produces the estimate ŝs of the total score of all possible split moves. (Thus, in the case
that K does not actually implement a split move, the choice of C ′ and C ′′ is still made, and this choice is an
auxiliary variable which the L kernel must constrain the value of.) Estimating ŝs and choosing C ′, C ′′ are done
via importance sampling using the proposal QK

split(C
′
∗, y1:t → u,C ′, C ′′) described in the following paragraph,

which generates a partition C ′, C ′′ of C ′
∗, and also some auxiliary random decisions u. To do importance sampling

using a proposal with auxiliary randomness we also introduce a “meta-proposal” kernel hK(C ′
∗, C

′, C ′′, y1:t → u)
to enable us to “pseudo-marginalize” over the randomness u (our choice of hK is described below). For a detailed
explanation of how meta-proposals can be used to pseudo-marginalize over auxiliary random choices, see (32);
note however that no additional theory beyond SMCP3 is needed to justify this SMCP3 algorithm or understand
the steps it performs. The particular way our K proposal uses QK

split and hK is as follows. For some N , for each

i = 1, . . . , N , K generates (C ′
i, C

′′
i , ui) ∼ QK

split(C
′
∗, y1:t → ·), and computes the importance weight

wsplit
i =

pt(Π
C′

i,C
′′
i

t , y1:t)h
K(C ′

∗, C
′
i, C

′′
i , y1:t → u)

QK
split(C

′
∗, y1:t → C ′

i, C
′′
i , u)

.

K then sets ŝs = 1
N

∑N
i=1 w

split
i . To choose the final proposed C ′, C ′′, K samples an index i ∈ {1, . . . , N} s.t.

the probability of choosing any given i is proportional to wsplit
i , and sets C ′, C ′′ = C ′

i, C
′′
i . In our experiments,

we use N = 10.

A smart proposal for a single split move. The kernel QK
split(C

′
∗, y1:t → u,C ′, C ′′) splits C ′

∗ into two clusters
using 3 pieces of auxiliary randomness: c1, c2, and p. c1 and c2 are two “chaperone” datapoints (42) which
initialize clusters. p is an additional point that goes in the cluster with c1. QK

split deterministically sets c1 = t,
then samples a distinct p ∈ C ′

∗ with probability proportional to p2({1, 2}, (yt, yp)), and then samples c2 uniformly
from the remaining points in C ′

∗ not equal to c1 or p. It initializes two clusters C ′ = {c1, p} and C ′′ = {c2}.
QK

split then iterates over every remaining point i in C ′
∗ in sorted order (low to high), and for each one, decides

to add it either to C ′ or C ′′, s.t. the probability of adding it to cluster C ′ is proportional to the joint PDF
of the clustering C ′ ∪ {i}, C ′′ with all the datapoints for indices in these sets, and C ′′ is proportional to the
corresponding joint PDF of the clustering C ′, C ′′ ∪ {i}. The L kernel (described below) uses a variant of this
proposal, QL

split which also performs this sequential process to assign each point to either C ′ or C ′′. QL
split

initializes C ′ and C ′′ differently from QK
split: it first samples c1 uniformly from C ′

∗, then samples c2 uniformly
from the remaining points, then sets p = −1 deterministically, and finally initializes C ′ = {c1} and C ′′ = {c2}.

Inverting the auxiliary randomness in a single split proposal. The kernel hK(C ′
∗, C

′, C ′′, y1:t → u) must
propose values for u = (c1, c2, p). It does this by setting c1 = t, sampling p uniformly from C ′ \{t}, and sampling
c2 uniformly from C ′′. The L kernel uses a variant of this, hL, which sets p = −1, samples c1 uniformly from
C ′, and samples c2 uniformly from C ′′.

The L kernel: producing Πt−1 from Πt. The L kernel in our SMCP3 algorithm must output a partition
Πt−1, given the Πt output by K. If {t} ∈ Πt, L simply outputs Πt−1 = Πt \{{t}}. Otherwise, L chooses between
a split, merge, or stay move on Πt, using proposals calibrated for the model pt−1(Πt−1, y1:t−1), rather than the
model calibrated to pt used by the K kernel. In particular, upon receiving Πt, L finds the cluster C̃ ∈ Πt

containing the point t, and sets C̃ ′ = C̃ \ {t} and Π1
t−1 = Πt \ {C̃}∪{C̃ ′}. L then uses the steps described in the
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preceding paragraphs to decide whether to split cluster C̃ ′ into two new clusters, merge C̃ ′ with another cluster
in Π1

t−1 \{C̃ ′}, or output Πt−1 = Π1
t−1. The above steps are modified in three ways when used by the L proposal

to choose to split, merge, or keep C̃ ′: (1) each score computed in the K kernel using pt(·, y1:t) is computed in L
using pt−1(·, y1:t−1), (2) Q

K
split and hK are replaced by QL

split and hL, and (3) while split moves in the K kernel
cannot split clusters initially containing only 2 points, because the K kernel may not perform a split move which
results in a partition in which t is in a singleton cluster, the L kernel may split clusters containing 2 points.

The manner in which the K and L kernel constrain each others’ random choices. In addition to
proposing Πt from Πt−1, the K proposal must also output a specification of the value of every random choice the
L kernel makes, such that if the L kernel made those choices when given Πt, it would output the same Πt−1 K
started with. Likewise, L must output a specification of every choice made by K. Some of the random choices
made by L can be constrained using the choices K makes to choose Πt, and vice versa: when K performs a split,
L must perform the opposite merge, etc. There are other there are other choices made by L which it is unclear
how to constrain by the random choices K needs to make to compute Πt, and likewise there are choices made
by K which L cannot constrain without sampling additional random values. Thus, K and L sample additional
random choices solely for the sake of constraining each other.

The extra random choices K makes are as follows:

1. K samples all the randomness L would generate to sample and score its split moves, which are cannot be
deterministically constrained by the choices K has made. If K did not choose to make a merge move, this
means that L did not choose a split move, so all random choices L made to estimate the likely value of doing
a split move need to be proposed by K. In this case, K can propose these choices from the exact same
distribution L would use. If K did choose to make a merge move, L must have proposed a split move which
inverts this merge move. This means that one of the N possible split moves proposed by the L kernel was
consistent with the merge move K performed. K generates N −1 random split proposals for the L kernel to
have made as the possible splits not selected as the chosen split move in order to estimate ŝs, and generates
a final split move which is the exact opposite of the merge move it made (meaning the proposed C ′ and C ′′

are the clusters C ′
∗ and C which K merged). To do this, K must sample auxiliary randomness u which QL

split

may have generated in proposing the C ′ and C ′′; it does this by sampling u ∼ hL(C∗ ∪C,C∗, C, y1:t−1 → ·).

The extra random choices L makes are as follows:

1. L samples all the randomness K would generate to sample and score its split moves. This is done symmet-
rically to how K generates the randomness needed for L’s split-related proposals.

2. If L performed a split move, splitting cluster C̃ ′ into clusters C ′, C ′′, then the locally-optimal datapoint
assignment at the start of the K kernel may have initially placed t either into C ′ or C ′′; L must choose one
of these options, and does so such that the probability of choosing C ′ and C ′′ are each proportional to the
joint PDF of the resulting partition after putting t into the chosen cluster.

Given these additional random choices, L can constrain all the random choices K made for the sake of generating
Πt, and L can also constrain the additional random choices K made for the sake of constraining L by filling in
the values these choices would need to take for L to output the constraint on K consistent with the choices it
actually made during its execution. K constrains the choices in L similarly. (In the case where K added t to a
singleton cluster, and L deterministically inverted this, the only random choice from K which L has to fill in is
the fact that K chose to put it in its own cluster.)
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