
4. Experiments

SMCP3: Sequential Monte Carlo with Probabilistic Program Proposals
Alexander K. Lew* 1, George Matheos* 1,2, Tan Zhi-Xuan1, Matin Ghavamizadeh1, Nishad Gothoskar1, Stuart Russell2, Vikash K. Mansinghka1

*Equal Contribution 1 MIT 2 UC Berkeley

1. Introduction

2. Our contribu7on: SMCP3

Paper

Related work

Talk Open Source
Library

SMCP3

is a new family of
SMC algorithms.

It generalizes:

Particle Filtering

Resample-Move SMC

Move-Reweight SMC

SMC Samplers

Annealed importance
sampling

by supporting
general

probabilistic
programs

as proposal
distributions.

SMCP3 also automates the implementa3on of SMC
given probabilisNc programs for the target probabilisNc model
and the proposal distribuNons.

Sequen3al Monte
Carlo (SMC)
Given a sequence of
probabilis2c models
𝑝! 𝑥! , 𝑦":! , and
observa2ons 𝑦":!…

…at each 2me 𝑡, SMC
infers:
1. 𝑝! 𝑥! = ⋅ 𝑦":!)

2. 𝑝!(𝑦":!)

…by genera2ng a properly weighted par/cle
collec/on (𝑥!$, 𝑤!$) $%"

& .
Properly weighted means: the weights correct for the mismatch
between the distribu4on used to generate each par4cle 𝑥!", and

𝑝! 𝑥! = ⋅ 𝑦#:!). (For formal defini/on, see “Theory”.)

Density 𝑘 ∶ 𝑋 → 𝑌

𝑋 𝑌
𝑘

Probabilistic
Program
𝐾 ∶ 𝑋 ⇝ 𝑌

𝑋 𝑈% 𝑌
𝐾

𝑋!&# 𝑋!
𝑘

𝑙

SMC Sampler (Del Moral et al. 2006b)

𝑋!&# 𝑈% 𝑈' 𝑋!

𝐾

𝐿

SMCP3 Update (this paper)

Components:
Density 𝑞! ∶ 𝑋 → 𝑈!
Function 𝑓! ∶ 𝑋 ×𝑈! → 𝑌

Sample operation:
𝑢! ∼ 𝑞! 𝑥 → ⋅ ; 𝑦 ← 𝑓 𝑥, 𝑢!

Components:
Probabilistic Program 𝐾 ∶ X"#$ ⇝ X% ×𝑈&
Probabilistic Program 𝐿 ∶ X% ⇝ X%#$ ×𝑈!

Particle update:
𝑢! ∼ 𝑞! 𝑥% → ⋅
𝑥%, 𝑢& ← 𝑓! 𝑥%#$, 𝑢!
return 𝑥%

Components:
Density 𝑘 ∶ X"#$ → 𝑋%
Density 𝑙 ∶ 𝑋% → 𝑋%#$

Weight update:

?𝑤 ← '(!(*!)
'(!"#(*!"#)

,$(*! →.$)
,%(*!"# →.%)

(/0$
!

/ (0%
! ∘2%

"#)
𝑥%, 𝑢&)

(see Theorem 1)

Particle update:
𝑥% ∼ 𝑘(𝑥%#$ → ⋅)

Weight update:

?𝑤 ← '(! *!
'(!"#(*!"#)

3 *! →*!"#
4 *!"# →*!

SMCP3 is derived by extending the “SMC Sampler” par:cle update to support general probabilis:c
program proposals—not just proposals with tractable-to-compute probability densi:es.

Tracking 3D Objects from RGB-Depth Video Quan?ta?ve study on large datasets

Qualita?ve study

We measure inference performance via SMC’s average es6mate of log𝑝!(𝑦":!). log𝑝!(𝑦":!) is a quan6ty SMC is commonly used to es6mate. By
Jensen’s inequality, approxima6on error in SMC results in the average log𝑝!(𝑦":!) es6mate being too low, so higher es(mates indicate more
accurate inferences. It also turns out bounded error in mean log𝑝!(𝑦":!) es6mates implies bounded error in posterior inferences (Lew et al. 2022).

Role of the SMCP3 Proposals
The forward proposal 𝐾 sees an old particle 𝑥CDE
(and the data 𝑦E:C) and proposes an updated
particle 𝑥C.
The backward proposal 𝐿 inverts the forward
proposal. Given 𝑥C (and 𝑦E:C), 𝐿 proposes what 𝑥CDE
the forward proposal may have received as input,
and what random choices 𝑢G the forward proposal
may have made while updating 𝑥CDE into 𝑥C.
The forward proposal must also output the set of
random choices 𝑢H the backward proposal would
make to invert it.

SMC Algorithm families generalized by SMCP3. SMC Samplers, “Sequential Monte Carlo Samplers”, Del Moral et. al 2006a; “Sequential Monte Carlo for Bayesian computation”, Del Moral et. Al 2006b.; Resample-
Move SMC, “Following a Moving Target”, Gilks and Berzuini, 2001. Move-Reweight SMC, Marques and Storvik, 2013. SMC with Transformations, Everitt et al., 2020. Annealed Importance Sampling, Neal, 1998.
Probabilistic programming languages supporting automated SMC with proposal densities written as probabilistic programs. Gen (Cusumano-Towner et al. 2018, 2019), Pyro (Bigham et al., 2019) Birch (Murray, 2013;
Murray and Schon, 2018), Inference Combinators (supports non-density proposals with auxiliary variables; equivalent to a restricted subset of SMCP3 forcing the use of sub-optimal backward proposals), “Learning
Proposals for Probabilistic Programs with Inference Combinators”, Stites et al. 2021.
MCMC with support for proposals with auxiliary sampling and deterministic transformations (“involutive MCMC”). “A general perspective on the Metropolis-Hastings kernel”, Andrieu et al. 2020. “Automating
Involutive MCMC using Probabilistic and Differentiable Programming” (Cusumano-Towner et al. 2020), “Involutive MCMC: a unifying framework”, Neklyudov et al. 2020.

Misc. “Recursive Monte Carlo and Varia/onal Inference with Auxiliary Variables”, Lew et al. 2022.

The SMCP3 Par2cle Update

5. Theory

computed via density expansions computed via automa2c
differen2a2on

6. Automa0on
A probabilistic programming system can
automate SMCP3, given probabilistic
programs for the target model and the
proposals. Particles are updated by running
the forward proposal, and particle weights
are computed via density computations &
AD.

• Proper weighting. SMCP3 computes proper particle weights (Thm. 1).
• Formally, this means: for any integrable 𝑓, 𝐸 𝑤!"𝑓 𝑥!" = 𝑝!(𝑦#:!)𝐸($∼*$ ($+ ⋅ -%:$)[𝑓 𝑥!].

• Central limit theorem. SMCP3 converges as the number of particles 𝑁 → ∞ (Prop. 2).
• The locally optimal 𝑳 inverts 𝑲. Given any forward proposal 𝐾, we precisely characterize the

backward proposal which minimizes the variance of the incremental particle weights (Prop. 1).
(This is an analogue to a similar theorem from Del Moral et al 2006a.)

@gen function K(tr, t, new_obs)
Sample v from dynamics model
prev_z = tr["z$(t-1)"]
v = {"v"} ̃ normal(prev_z, 1.0)
Unadjusted Langevin Ascent to sample z
z = {"z"} ̃ ULA(v, z_prev, new_obs)
Update trace with newly proposed z
tr["z$(t)"] = z
Return proposed trace & aux. randomness
return (tr, Trace("v" => v))

end

3. Example
Probabilis)c model

SMCP3 Proposals (for differen)able models)

𝑧/ = 0
For 𝑡 > 0:

𝑧! ∼ 𝒩 𝑧!&#, 1.0
𝑦! ∼ 𝒩(𝑧!, 1.0)

In this example, the latent state
𝑥! of inference is a trajectory:

𝑥! = 𝑧#:! Proposal variants for non-differentiable models

• Sample quality = do the particles land in high-posterior-probability
regions?

• Weight quality = do the particle weights accurately measure the
relative quality of the samples?

In more restricted families of SMC algorithms it can be hard to design
algorithms with both high sample quality and high weight quality.
SMCP3 has new degrees of freedom that help to achieve both.

SMCP3 can help to simultaneously achieve good sample quality and good weight quality.

@gen function L(tr, t)
Guess the aux. var that K sampled
prev_z = tr["z$(t-1)"]
v = {"v"} ̃ normal(prev_z, 1.0)
Return previous step's trace, and trace
of K that would lead to this trace.
return (Trace(["z$(i)" => tr["z$(i)"]
for i in 1:t-1]...), Trace(

"v" => v, "z" => tr["z$(t)"]))
end

@gen function model(t)
z = 0
for step in 1:t
z = {"z$(step)"} ̃ normal(z, 1.0)
y = {"y$(step)"} ̃ normal(z, 1.0)

end
end

Unlike proposal densi?es, probabilis?c program proposals may sample auxiliary random choices,
may apply determinis?c transforma?ons, and need not admit densi?es over their outputs.

𝑞 𝑎 → 𝑢 =A
0∈2

𝑞 𝑣 𝑎, 𝑢34(0 ; 2))

x value
0.0 2.5 5.0

PD
F

Boostrap Particle Filter

x value
0.0 2.5 5.0

PD
F

Resample-Move SMC

x value
0.0 2.5 5.0

PD
F

SMCP3 SMC

𝑧& value 𝑧& value 𝑧& value

po
sit

ion
 zₜ

0
5

10
15
20

E[
zₜ]

0
5

10
15
20

time t
0 5 10

log
 p(

y₁
..ₜ)

-400
-300
-200
-100

0

Noisy observed
trajectory
3σ window of
exact posterior

Latent inferred
by SMCP3
SMCP3

Boostrap
filter
Resample-
Move SMC

yₜ
E[

c
lus

ter
s]

1
2
3
4
5

datapoint number t
0 50 100

log
 p(

y₁
..ₜ)

-300
-200
-100

0

Cluster 1
(inferred)
Cluster 2
(inferred)

Cluster 3
(inferred)
Cluster 4
(inferred)

SMCP3
Locally optimal
SMC

EsBmate of
posterior

expectaBon

Online Data Clustering
(Mixture Model)

Online State Es1ma1on
(State-Space Model)

SMCP3

ParBcle

EsBmate of
log 𝒑(𝒚𝟏:𝒕)

𝒛' ≔ 𝒗+ 𝜎(∇𝒗 log 𝑝 𝒁* = 𝒗, 𝒚* 𝒛+)
𝒛* ∼ 𝒩 𝒛', 2𝜎𝐼

𝒗

𝒛′

𝒛*

𝑣

𝑢!! = (𝒗, 𝒛")

𝒗 ~ 𝑝 𝒁* = ⋅ 𝒛+)

𝑥# = 𝒛$:#

𝒗 ~ 𝑝 𝒁* = ⋅ 𝒛+)

𝑥" = 𝒛$:"𝑢&! = (𝒗)𝑓!!

𝑓&!

𝑄!! 𝑄&!

𝒛!

𝒗 𝒗

𝑢,! = (𝒗, 𝒛*)

𝒗 ~ 𝑝 𝒁* = ⋅ 𝒛+)

𝑥+ = 𝒛-:+ 𝑥* = 𝒛-:*𝑢/! = (𝒗)𝑓,!
𝑄,! 𝑄/!

𝒛* ~ GridGibbs(𝑝 𝒁* = ⋅ 𝒚*, 𝒛+),
{𝒗 + 𝜎𝑖, 𝜎𝑗 : 𝑖, 𝑗 ∈ {−2,−1, 0, 1, 2}}) 𝒗 ~ GridGibbs(𝑝 𝒁* = ⋅ 𝒛+),

{𝒛* + 𝜎𝑖, 𝜎𝑗 : 𝑖, 𝑗 ∈ {−2,−1, 0, 1, 2}})
𝑓/!

Legend
Observed 𝒚&

Proposed sample
from distribution

Move along
gradient of

𝑝 𝒁* = ⋅, 𝒚* 𝒛+)

Point sampled
from grid of

possible values

Inferred 𝒛&
from 1 particle

