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Brain computation as fast spiking neural Monte Carlo inference in probabilistic programs

SNMC scales to real time perception and cognition

Spiking Neural Monte Carlo circuits

SNMC model of primate physical scene understanding, 
including data-driven ANN proposals
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Chrobak and Buzaki, 1998

Hughes and Crunelli, 2006

Redgrave et al., 2010
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Probabilistic Graphical Model Inter-columnar Connections

SNMC importance sampler circuit topology, sorted given known sensory (thalamo-cortical) L4 input according to known intra-layer 
cortical connectivity, predicts multiple �ndings in hodology, synaptic physiology, and extracellular spike & �eld electrophysiology:
1. Observed L2/3 sparse and L4/5 dense spiking and relative timing
2. The existence of thalamo-cortical L4 inputs
3. The existence of speci�c cell types & synaptic physiology in L4/5

Intercolumnar connectivity and massively parallel spiking predict 
traveling gamma waves

Successive sample-score epochs, whose order is de�ned by dependency structure, produce phase shifted bursts of activity in neighboring columns 

Sensory input should be timed to SNMC step onset Subcortical loops could load precisely timed observation 
and resampling data to their source columns 

Sequential Monte Carlo codes predict that 
spike rates will NOT linearly track probabilities

(without normalizing against spike rates for other particles)

Topology and timing of sequential Monte Carlo - loading data, proposing variables, scoring variables, and resampling particles - predicts parallel cortico-subcortical loops for each particle, 
synchronized within particles (across columns) and across columns, via cortico-thalamic theta rhythms

How can slow, spiking neurons implement the fast probabilistic inferences needed to explain perception and cognition? Biological 
neurons are millions of times slower than electronic computers, yet they can somehow approximate probabilistic inferences in 
complex probabilistic programs with many latent variables in real-time. Here we show how neurons could perform probabilistic in-
ference, using massively parallel spiking assemblies to implement a novel neural coding scheme, called a dynamically weighted 
Monte Carlo spiking code. We prove that these assemblies generate approximate samples and make unbiased estimates of 
probabilities and importance weights, enabling sound approximate inference. Sampled latent variables are sparsely coded, but 
probabilities and weights are densely coded, and can be read via time-varying, divisively normalized decoding of the dense spiking 
from speci�c sub-populations. We show how to implement data-driven arti�cial neural networks for making fast, bottom-up 
proposals that are scored and corrected using a structured generative model, yielding new hybrids of distributed and localized 
neural representations. These spiking neural Monte Carlo architectures scale exponentially better than probabilistic population 
codes, and are neurally mappable, but unlike deep learning models, they also enable sound implementations of state-of-the-art 
model-driven AI architectures and inference processes from Bayesian cognitive science. We demonstrate generality by providing 
spiking circuits for probabilistic program models of visual prey tracking by larval zebra�sh, mental physics simulation by primates, 
and human concept learning. We also present empirical support for this theory, con�rming predictions for neural connectivity, 
coding, and dynamics using data from multiple brain regions and model organisms.

SNMC model of human concept learning 
via data-driven cognitive MCMC 

Spiking Neural Monte Carlo requires exponentially fewer neurons than standard probabilistic population codes and ENS spiking codes. For low-dimensional probabilistic 
programs that only make a small number of latent choices, the difference can be modest in absolute terms. As the number of latent variables in the probabilistic program 
grows, the cost of the neural representation for previously proposed schemes grows exponentially, rendering them impractical for the majority of perceptual and cognitive 
inferences. (Ma, Beck, et al 2006, Legenstein and Maass 2014).    

Constructing SNMC circuits 
from Gen probabilistic programs

Model Based on Rishi Rajalingham, Aida Piccato, Mehrdad Jazayeri 2021

Supporting the Embodied Intelligence Mission and the Development of Intelligence Mission

Benefits over ANNs alone: improved robustness, due to top-down model-based 
scoring, plus a model for how probabilistic programs in the brain could generate 
training data for data-driven ANNs Model Based On Pratiksha Thaker, Joshua B. Tenenbaum, Samuel J. Gershman 2017; Tenenbaum 1999

Supporting the Supporting the Development of Intelligence Mission

Benefits over vanilla SMC / particle filtering: robust convergence 
even for high dimensional problems & unlikely data, due to data-
driven proposals and MCMC updates (Gilks and Beruzini 2001)
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